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Chapter 1
Introduction

In the recent time it is more and more obvious that the energy circulation on earth
caused by humans must be radically restructured to avoid catastrophic impact
on ecology caused by current industrial development.

There is an idea of sustainable growth [19] which teaches how industry and
culture ought to be restructured to obtain certain reasonable industrial and tech-
nological growth yet maintaining the irreversible destruction of the utmost com-
plex ecological system on earth as low as possible.

From the industrial and technological point of view, this work is targeting cer-
tain concrete situations in heavy industry (mainly the steel industry) to optimize
the energy consumption in such technology processes.

On the other hand, research has also its internal logic which can lead, to
certain extent, outside from the original technology idea. However, doing an
engineering research means just to have the technology background always active
in mind. In our case, we fulfill this condition putting emphasis on the following

aspects.

e FEfficient computability. We put considerable stress on computational and
algorithmic aspects in our research, aiming to minimize the inevitable in-

vestments to the computer systems capable to realize our control approach.

e Energy consumption optimization. The criteria (objective functions) which

we are using during the optimization have energetic interpretation. Even



if the optimization algorithms serve also other purposes, they minimize the

energy consumption of the system as well.

e Dimension reduction. Even if the target case is 3-dimensional, we suppose
various approximative steps to decompose and to approximate the real pro-
cess by 1-dimensional systems. The reason is that the proposed control
algorithms must be efficiently computable in industrial conditions. Bearing
in mind the advances of computer technology, it is well possible to solve
1-dimensional partial differential equation in recent industrial control sys-
tem. But higher dimensionality is currently out of scope of standard control

systems.

The basic technological process behind our research is schematically drawn
in Figure 1.1. It is a model of reheating furnace, where ingots with simple ge-
ometrical shape are reheated for further processing steps (usually rolling). The
idea of this process is abstracted from various concrete industrial plants as are
described for example in [43, 23]. Another kind of reheating furnace where the
slabs (ingots) revolve on the rotating part of the furnace is in figure 1.2.

When we try to think accurately about the processes that occur inside such
reheating furnace, soon we run into tremendous problems - theoretical as well as
practical. For example, the burning gas inside the furnace is in a turbulent state,
so accurate modeling and control of such subsystem is not possible with current
computer technology.

Fortunately, there are certain simplifications verified in practical situations
that can make modeling and control feasible. These simplifications depend strongly
on the concrete technological process. For the case of furnace, we can collect them

in the following points.

e Usually, the furnace is split to certain number of zones which are heated
by few burners. Even if the temperature inside the gas near the burners
can have large fluctuations, the inner side of the walls and other parts of
the zone have rather constant temperature. The surface of ingots is heated

by radiation from the walls and other parts of the zone. This is the reason
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Figure 1.1: In the figure a) there is a sketch of the basic situation in which we
are interested. A slab (ingot) of a rectangular parallelepiped shape moves in a hot
chamber of a reheating furnace. In the figure b) is a longitudinal cross section of
a concrete type of reheating furnace operating in continuous mode. The slabs are
continuously moving through the furnace. The controlled parameters are the gas
input flows to the burners and the speed of the movement. The temperature inside

the furnace is measured with a system of thermocouples.
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Figure 1.2: A ground plot of the rotating reheating furnace. There are two sets of
thermocouples. The first set denoted with " T" is on the ceiling and the second set

is on the wall at the height of rotating slabs.
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we can suppose that there is approximately spatially constant boundary
condition on the whole surface of ingot. Moreover, the design of reheating

furnaces usually supports this assumption to make the control feasible.

Based on the previous point, one zone of reheating furnace acts as an in-
tegrated unit, providing spatially constant, possibly time varying source of

temperature on the boundary of the ingot.

The ingots have simple geometric shape determined by further technological

steps like rolling etc. We can suppose a shape of rectangular parallelepiped.

The control system has to set finite number (often less than 10) inputs
representing amount of gas flowing to the burners. In general, the objective
of control is a constant temperature or a prescribed time development of the
temperature inside the ingot achieved under various conditions like minimal

energy consumption and/or prescribed time etc.

There is a small number (between 10 and 20) of thermocouples inside the
furnace which allows us to measure the temperature of atmosphere in the
furnace. There can be also a pyrometric measurement of the temperature
on the surface of ingot. However, we can not suppose to measure the tem-
perature inside the ingot. Therefore, the heat conduction from the surface
of ingot to its interior must be modeled in a computer system to achieve

good performance.

Even if we apply all these reasonable simplifications, still the control of large

technological process as operation of reheating furnace is a very complex task.

There are many subsystems and subtasks on which the research can focus to

make them more efficient or reliable.

Our research is focusing to the optimal boundary conditions which would give

a prescribed temperature profile in space and time. Then, it is a role of other

subsystems to track accurately the computed boundary conditions.

The decomposition, which separates this sub-problem, permits us also to ex-

perimentally verify the proposed algorithms on laboratory specimens. The labora-

12



tory system used for the experiments which are targeting this research is described
in chapter 3 (see also [42]).

The approach we present here is based on the idea to use a boundary con-
trol for modeling of the above mentioned technological plants. But the conditions
(state) in the interior of a distributed parameter system are related to the bound-
ary conditions through inverse model. The solution of this model is often so called
”ill-posed” because it incorporates an inversion which lacks good properties of the
original model. Among the most critical problems are the following: there is no
solution to the inverse problem, the solution is not stable ( inverse operator is
not continuous). Generally, the methods developed for this class of problems

’ a priori” information to make the problem solvable or

consist in using certain ’
to "regularize” the problem.

The presented work contributes in two aspects. First of all, there is a method-
ological contribution. The new methodology consists in the following point of
view to the predictive control of distributed parameter systems.

In general, the synthesis of model based predictive control (MBPC) algorithm
is derived from a minimization of certain least squares criteria which express the
distance between the controlled variables and the reference signal. We can write

this in an operator form as:

Il Au —w [lfixy.p, +A 1w [lfyy,p, (1.1)

where Au describes a future behaviour of the system as a function of future
control, || X ||,|| Y || denote the corresponding norms in the functional spaces
X, Y chosen to express the distance, and D, Dy denote the discretizations.

The above general formulation contains most of the so called tuning knobs of
model based predictive control schemes because various weighting factors in fact
define a special norms. Tuning knobs related to the horizons can be expressed
by the particular functional spaces choice. The sampling frequency is the dis-
cretization factor and so on. In model based predictive control the parameter
A is interpreted as a weighting factor which introduces the smoothness of the

control u to the criterion of control quality (1.1). However, deeper interpretation
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of this parameter is not provided in the MBPC framework. On the other hand,
in practise it is often inevitable to use this factor to avoid an ill-conditioned char-
acter of the equations even in a finite dimensional systems described by ordinary
differential equations. As was noted for example in [14] it is difficult to choose
this factor in a useful way.

The tuning knobs are then used to obtain a reasonable performance and nu-
merical stability of the control algorithm. When we consider a concrete model
based predictive control scheme, we find more tuning knobs of various complexity.
This creates rather complex decision space.

We would like to stress that the possibility to successfully find the appropriate
value of the tuning parameter X is strongly dependent on the ”spectral behavior”
of operator A in the criterion (1.1). We can identify two big classes: one with
the spectrum polynomially falling to zero and another, where the spectrum falls
exponentially or faster. The latter being the case of infinite dimensional evolution
operators (systems described by partial differential equations). In this case it is
almost impossible to cope with the severely ill-conditioned numerical behaviour
without deeper theory.

Fortunately, such theory is at disposal if we interpret differently the criterion
(1.1). We can see the minimization of (1.1) as a tool for solving an ill-posed

operator equation

Au=w (1.2)

in an appropriate functional space. In the case of infinite dimensional evolu-
tion operators which are so called ”infinitively smoothing” (as is for example the
heat conduction equation) there is a well developed theory of ill-posed problems
solving which teaches how to invert the equation (1.2) even in the case when the
spectrum falls to zero exponentially. This theory includes also the case when the
equation (1.2) has no solution and we are looking for the element Au nearest in
some sense to w.

So the change of the focus is in the fact that we can consider the control

algorithm synthesis as a solving of ill-posed problem (1.2). Then the regularization

14



(ill-posed problem solving) methods give us an algorithm for solution of (1.2)

based on the minimization of the following functional:

Me(u) =|| Au—w |liixyp, +o || v llfy),p, (1.3)

This looks to be the same as (1.1) but now the parameter « plays a crucial role
and we have a deep theory how to choose and interpret this so called regularization
parameter. Extending this point of view further, it can be seen that discretization
step (sampling frequency) is also in fact a regularization parameter as well as
various weights. So adopting this point of view, we obtain the possibility to make
a synthesis of control algorithm for infinite dimensional infinitively smoothing
evolution operators. Moreover, we have a deeper interpretation of tuning knobs
as being in fact the regularization parameters also for the classical predictive
control case. Particularly the possibility to interpret the appropriate value of A
seems to be interesting.

The above methodology has been a driving force behind the concrete de-
velopment of the presented work which is centered around the following main

contributions:

e Close-loop predictive control algorithm for thermal system described in Sec-
tion 3.4.

e A robust method for efficient computation of Green’s functions in Sec-
tion 3.2.

e Analysis of prediction/simulation accuracy near the heated boundary of

thermal system in Section 3.2.1.2.

e Off-line identification of heat-transfer and thermal diffusivity coefficients in
Section 3.1.

e Open-loop step-wise control in Section 3.3.

In the next chapter we collect some background material which establishes

the basic frameworks within which we express our work.

15



In the first part we shortly place our undertakings in the framework of dis-
tributed parameter systems control. Another part gives an introduction to ill-
posed inverse problems solving. There is also a short introduction to the model
based predictive control.

The central part of the work is in Chapter 3 where we proceed from identifi-
cation and simulation to an open loop step-wise control and finally to a regular-
ization based predictive control.

At the end of the work there are two appendices. The first one derives a
solution of the one dimensional heat conduction equation from the first princi-
ples as far as much of the text is based on knowledge of this otherwise classical
derivation.

To provide an example of software complexity related to the basic algorithms
developed here we give a listing of some procedures in the second appendix. The
software system which is in the background of this work recently counts more
than 13 000 lines of a code in C language. However, the code is written to
support experiments and research work and is not meant to be highly efficient
”production” implementation. In the near future we plan to rewrite the basic
parts of this system with respect to efficiency and portability in Java language.

Except some auxiliary parts of the work, we use the notation Y (z,t) for the
temperature distribution to stress that the infinite dimensional distribution along
the spatial domain is the output - controlled parameter. In the same way u(t)
denotes the boundary value signal for corresponding partial differential equation
which represents the control.

A more complicated situation is in Section 3.3 where the boundary condition
is pre-computed and serves as a reference signal to one dimensional spline based

predictive controller. We use notation u¥(t) to stress this fact.
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Chapter 2

Preliminaries

2.1 Boundary control as an ill-posed problem

The process of reheating of an ingot in a reheating furnace, as we have mentioned
it in the introduction can be described mathematically with the following linear

partial differential equation (PDE):

Y, = a’AY
Y(x7 y7 Z’ 0) :}/E)(x’ y"z)’(x?y’ Z) E D (2'1)
Y(z,y,2,t) =u(t),(x,y,2) € D

where the initial and boundary conditions are Yp, resp. u(t).

Because of an industrial infeasibility of higher dimensional PDEs we devote
most of our efforts to the modeling, inversion and control of the following 1-
dimensional PDE (2.2):

2V (2,t) — a? 25V (2,t) + Y (2,1) = 0

Y(z,t9) = Yo(x) (2.2)
0<z<L, t>ty, a#0

with some combination of the following boundary conditions:
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V(0,8) =ui(t), ZY(0,t) =ui(t) 23
Y(L,t) = us(t), ZY(L,t) = uh(t) '

It serves us also as a test bed for more general ideas as are described for
example in [40]. The system (2.2) has also an advantage, that it can be easily
realized in laboratory, yet providing interesting experimental insights into the
character of the problem.

The particular case, when the boundary conditions are Y (0,¢) = u(¢) and
2Y(L,t) = 0 (see equation (2.13)), models a laboratory experimental apparatus
in Figure 3.1. One end of the bar is isolated and the other one is heated. In
equation (2.2) there is also a term bY (z,t) representing heat transfer to the
surrounding atmosphere which makes the identification of both parameters a, b
nontrivial.

In both models (2.1) and (2.2) the state of the system can not be described
in a finite dimensional space because it depends also on space in a continuous
manner. A control of such systems has been studied in theory of distributed
parameter systems control.

Basics of this theory are going back to late sixties. The emphasis at the
beginning was to transfer the main concepts from theory of finite dimensional
systems control. The fundamental contributions have been worked out by A.G.
Butkovskij [11], J.L. Lions [30] and others. However, because of an infinite dimen-
sional character of the system description, the theory is much more complicated
and relies mainly on functional analytic methods. Indeed, up to date the dis-
tributed parameter systems theory is far from a unification achieved in classical
control theory.

More recent is a state space theory for distributed parameter systems (see for
example the book of R.F.Curtain and A.J.Pritchard [15]) based on an operator
semi-group approach.

In fact, in our work we design a sort of optimal control where a signal which
has to be tracked is obtained via inversion of the system model. In this sense our
approach shares some ideas with that in [55].

The receding horizon state-space strategy for distributed parameter systems

18



which we also employ can be related to that found in [5], however, we derive our
approach more from the recent development in model based predictive control
as is described in [13]. A basic ideas of this approach are summarized in the
following section.

As was stressed by Tichonov school [20] and others [44], to derive an optimal
boundary signal from prescribed end-state of the system is an ill-posed problem.
Also the author in [17] has encountered a numerical ill-conditioning in his method
which has made the realization of his approach difficult.

The severely ill-conditioned character of the problem has forced us to consider
a usage of special methods for regularization of ill-posed problems. They are

introduced at the end of this chapter in section 2.3.
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2.2 Model Based Predictive Control

In this section we briefly mention basic ideas and building blocks of model based
predictive control. Among the first model based predictive control approaches
have been the Identification Command [39] and Dynamic Matrix Control [18].
Even if, there are more approaches which belong to this rather general class of
predictive control we focus on Generalized Predictive Control (GPC) [13] as one
of the latest developments in this field.

The model based predictive control is based on the following set of ideas.

e The process model is used to derive the future process behaviour as a func-
tion of past inputs/outputs and as a function of hypothetical future controls.
There is (usually finite) time domain window over which the predictions are

made.

e A cost function is defined which measures the tracking error between the
future system outputs as a function of future controls and reference signal.
This cost is measured over certain time domain which is a sub-domain of

the prediction window.

e The cost function is optimized with respect to hypothetical future control.
The optimization provides a vector of optimal future controls leading to

minimal tracking error.

e The control loop is closed using a so called receding horizon strategy where
only the first element of the above vector of optimal controls is transmitted

to the plant and the whole processing window is moved 1 step ahead.

GPC in particular, uses a Controlled Auto-Regressive and Integrated Moving-

Average (CARIMA) process model in the following form:

Clg")
A €(t). (2.4)

Where A is the difference operator (1 —¢™!') i.e. Az = 2(t) — 2(t — 1), A, B
represent the plant dynamics and A, C' the disturbance.

A(g My(t) = B(g " ult—1) +

20



The above model is used in GPC to provide a long-range predictive strategy
where the future outputs of the model are predicted up to a prediction horizon.
As inputs to the prediction operator the past and present outputs (y(t—1i),i > 0)
and the past controls (u(t — ¢),i < 0) are used. A distinctive feature of GPC
is that the predictions are expressed as a function of future control increments
Au(t+1),i > 0.

According to [13] the predicted output can be decomposed to two terms. First

is so called free response of the system

yi(t+1) = y(t) + Fi(¢ ) Ay(t) + Gi(g ") Au(t - 1) (2.5)

where the future controls (i), > t equal u(t — 1) i.e. the future control
increments are zero. y; is only a function of current output y(¢) and past outputs
and controls.

The second element of the output decomposition

Yot +1) = Ga(¢g~H)Au(t +i—1) (2.6)

is dependent on future control increments u(t + i),7 > 0.
The future system response for the whole prediction interval ¢ = 1,.., N can

be written in a matrix form as

y=Gu+p+e (2.7)

where y is the vector of future outputs y(t+1),7 > 0, u is the vector of future
control increments, p is the vector of predictions according to the free response
y1(t + i) and € is the vector of error due to future noise terms.

If we denote as w(t +14),7 > 0 the reference signal then the control algorithm

can be synthesized from the following quadratic cost function with constraints

N2 NU
J(NL,N2,NU X)) = Y e(t+i)+ 1> Av’(t+i—1) (2.8)
i=N1 =1

Au(t+i) =0,i > NU (2.9)
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where e = (w(t+1) —y(t+1),...,w(t+N)—y(t+ N)) is a vector of tracking
errors, and N1, N2, NU and X are the tuning parameters of GPC, namely:

e N1 - the minimum costing horizon
e N2 - the maximum costing horizon
e NU - the control horizon

e ) - the weighting factor

For a deterministic plant with €(¢ + ¢) = 0 the prediction equation can be
substituted into the cost function. We obtain the following normal equations for

the minimizer of future controls:

u=(GTGH+)'GT(w — p) (2.10)

Given the normal equations above we can specialize the general model based

predictive approach to obtain the overall algorithm of GPC as follows:

1. If (adaptive) { Update the model parameters using recursive identification

method using for example Recursive Least Squares}.
2. Compute the free response ;.
3. Compute the reference vector w.

4. Compute the the step response elements of the matrix G from the current

model.
5. Solve the normal equations with a-priori given values of tuning parameters.

6. Apply the first element of computed vector of control increments to the

plant i.e. apply the control u(t) = u(t — 1) + u(1)

7. Shift the data vectors one element ahead and goto step 1.

22



2.3 Regularization methods

It is often the situation when quantitative data are sought, that the unknown
quantity can be derived only from a secondary information produced by certain
equipment. Usually, the unknown quantity x is related to the secondary infor-

mation at hand by a certain equation

Ax=b (2.11)

When this equation describes certain measurement process it is frequently a
Fredholm integral equation of the first kind. As will be described later, a nu-
merical solution of such equation can be a real obstacle in a way to obtaining
reasonable values x of the quantity sought. This sort of problem when a mea-

surement is described by an integral equation like

by) = / " K (y, P)a(r)dr (2.12)

arises in spectroscopics, physics, meteorology, astronomy, optics, geophysics
and many other fields.

When the reader thinks more deeply how integral operator works, it can be
perhaps seen intuitively why a solution of an equation (2.12) is a problem. The
integration destroys the original information contained in function x.

We can interpret the kernel K (y,7) in the equation (2.12) as a response func-
tion of a device, which must be determined by calibration. An ideal measurement
device would have response §(y — 7), which would immediately deliver the value
z(y) = b(y) sought. In the practise, we must expect much less "specific” response,
which at best has a form of Gaussian distribution, which somehow contaminates
and debases the input data. Unfortunately, to have such response function is still
too idealistic, we have often to deal with kernels like those in Figure 2.1 resp.
in Figure 2.2. These kernels describe a response of thermal system to bound-
ary heating and they are characterized by large plateaus with a shape far from
anything like Gaussian distribution.

A similar situation occurs when we are trying to describe certain physical

system with a parameterized mathematical model. Let us say that a thermal
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Figure 2.1: A kernel describing the response of the thermal system (2.13)
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system with the configuration in Figure 3.1 is described by the following partial

differential equation

2Y(z,t) — (J,Qai‘:gY(x,t) +bY (z,t) =0

Y (2,t0) = Yo(z),Y(0,t) = u(t), 2V (L,t) =0 (2.13)

" O
0<z<L, t>ty, a#0

then we can ask for the values a, b for a particular system. In general, a re-
sponse of the system which takes as input the system behavior and as an output
the parameter values has an unstable character. This means that minor pertur-
bation in data can cause substantial change in parameter values. This task is
known as system resp. parameter identification.

Another class of problems can be posed in the same system (2.13), namely,
the task of reconstruction of the temperature behavior on the one boundary if the
temperature time history is known on the other boundary. Even harder question
is the boundary temperature time history reconstruction from the system end-
state. This is the problem described by the kernels in Figure 2.1, 2.2. Both
problems are governed by integral equations of the first order of the sort (2.12).
We meet such tasks, for example, when we are trying to control in an optimal way
a thermal system to a prescribed interior temperature profile with a boundary
heating.

Recently, there is a big interest in engineering design to formulate a new sort
of inverse problems. To mention one illustrative example [56], let us suppose that
we have an ingot with flat end which is rolled. The shape of the end of the ingot is
generally defective after the rolling process. The aim is to pre-form an end-shape
which would result in flat end after the rolling. The situation just described is
schematically shown in Figure 2.3.

There are many other areas where engineers are trying to prepare certain
special shape in order to obtain a prescribed shape after the processing. For
example, a solidification front speed and shape can be planned in this way in

solid state technology [57].
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Another application field for regularization and ill-posed problem solving is
detection of internal cracks resp. inhomogeneities from boundary data. Interest-
ing problems are solved also in astrophysics, where surface structures of stars are
reconstructed from spectroscopic and photometric rotational modulation [24].

There are many approaches developed so far in various application domains
mentioned above, but generally, it can be said [24] that the regularization resp.
ill-posed problem solving is an art of introducing a general prior information (like
positiveness of the solution, smoothness etc.) into the inversion of the governing
equation of the process. It is almost impossible to give a general framework
for all methods. What can perhaps be said is that there are two fundamental
frameworks. One which uses functional analytic language and arguments and
another where a statistical interpretation and language is used. As an example of
the former we mention a Tikhonov school, the latter is described in an axiomatic
way in [46] or in [47].

In the next section we define more precisely the notion of ill-posed problem.
As an example we use the equation (2.12). Then we describe in more detail
the Tikhonov regularization approach. The list of references which we provide

contains also sources of alternative methods.

2.3.1 [Ill-posedness of the problem

It was Hadamard in 1923 who first gave a formal definition of well-posed problem,

calling the rest of the problems as ill-posed.

Definition 1 A problem is called well-posed if the following conditions are valid:
1. There exists a globally-defined solution for all reasonable data;
2. The solution is unique;

3. The solution depends continuously on given data;

The problem 1is called ill-posed if it is not well-posed.

As an example Hadamard gave the following problem for the heat conduction

equation (2.13):
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2V (x,t) — %Y(x,t) =0

Y(z,0) = Yp(z),Y(0,£) = 0,Y(1,£) = 0 (2.14)

0<z<1, t>0,

We can formulate two problems based on this equation. One is so called
forward problem, where the input (the data) is the temperature distribution
Y (z,0) = Yy(z) at the moment ¢t = 0 and the problem is to find the temperature
distribution Y (z,1) = Yi(z) at the later time moment ¢ = 1. This problem is
well-posed, which means that function Y; continuously depends on Y. But we
can state also the inverse problem, where the function Y; is given whereas we are
looking for the temperature distribution Y, back in time. The inverse problem is
highly instable.

To see the instability of the inverse problem (2.14) we can use separation of

variables to obtain an invertible description of the forward problem as:
Yi(e) = £y e (Yo, v )
Yr(2) = 1/V2sinkrz (2.15)

(x,y) = fo z(&)y(£)de

in operator form we can write:
Yi(2) = fy G(2,€,0)Y0(§)d = (G, Yo)
G(z,&,t) = T e F™ oy (€)ihy() (2.16)

Y = AYg
where A is a compact integral operator from Hilbert space Z to Hilbert space
U (Z = U = Ly(0,1)). The spectrum of operator A consists of values e ™.
Now the instability of the inverse problem is clear, because the inverse problem

can be expressed in operator form as:
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o0

Yo(z) = Y €™ (Vi, )t = A1V (2.17)
k=1

where the operator A~! has the spectrum )\, = ™. To express such spec-
trum geometrically, we can say that there are directions in which arbitrarily large
response to input data 77 is possible.

At this point it is worthwhile to make two notes.

e As was said above, the main problem in the given example was that 0 is an
accumulation point of the spectrum. This means that the inverse operator
has arbitrarily large eigenvalues, therefore the response to input data in

an inverse problem is arbitrarily large. On the other hand the example
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above represents in certain sense ”the worst case” because the eigenvalues
approach zero with extreme speed. In many applications, the spectrum
tends to zero much more slowly making the ill-posedness of the problem

weaker.

e The ill-posed character is persistent also in discretized versions of the prob-
lem. Here, what we obtain is a bad conditioned matrix with a ratio o1 /oy,
(the largest and the smallest singular value) which usually spans the whole
resolution of the floating point representation. The solutions are wildly

oscillatory when standard methods for solution are used.

Now, let us turn back to the definition 1. The discussion above has shown
how the instability in ill-posed inverse problem occurs. But we did not discus the
problems of existence and uniqueness expressed in the points 1,2 of definition 1.
In the example, we have supposed that the operator is invertible, so there is a
unique inverse element.

However, for linear ill-posed problems we can reformulate the basic problem

Ax=b (2.18)

as minimizing the following least squares functional:

F(x) = ||Ax — b|? (2.19)

Then all minimal elements must satisfy the normal equation

A*Ax = A'Db (2.20)

It can be shown that under reasonable assumptions there is unique solution
of the above normal equation, therefore we can generally suppose that there is
unique solution to (2.11) and concentrate the effort to solving the instability

problem.
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2.3.2 Tikhonov regularization

As we have illustrated above the instability of an ill-posed problem is caused by
accumulation of spectrum near the zero. Tikhonov (in 1943 - see the historical
notes in [48]) has introduced a foundation for the method which use a certain
prior information to decide how to ”shift” the spectrum away from zero. The
basic idea is that instead of minimizing the least squares functional (2.19) we

minimize the following ”smoothing” functional:

M*(x) = [|Apx — bs|l} + o[ Bx|l; (2.21)

where A, Ay, B are operators from Hilbert space Z to Hilbert space U; D
is closed, convex set of constraints, ||A; — A|| < h and by is perturbed right
hand side of the equation (2.11). « is so called smoothing resp. regularization

parameter. Then the normal equations for (2.21) are:

(A*A + oB*B)x = A*b; (2.22)

The stabilization of the ill-posed problem is in fact achieved by minimizing
certain functional ||Bx||, together with the solution itself. Choosing appropriately
the operator B respectively the norm ||.||2 allows to express various physically
reasonable features of the solution like smoothness etc. In practise, B is often
chosen as F identity operator and the norm ||.||2 as the W)} norm. There is also
a possibility to express non-negativity and monotonicity within this framework
by setting appropriately the constraints D. But here instead of solving normal
equation (2.22) special methods are needed [50].

However, when we turn back to original problem, the most difficult part is to
identify the appropriate value of smoothing factor a. If « is chosen too small,
then the problem is still too ill-posed ( the solutions are oscillatory), on the other
hand if « is too large, the solution is excessively damped and the original equation
has a weak influence to it.

There are different approaches how to choose the factor « [33], but the stan-
dard method consists in the following. We define so-called generalized residuum

as
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p(er) = [|Anxa = bs||* — (0 + hl|xall)* — u*(bs, Ap) (2.23)

where x,, is a solution of the smoothing functional (2.21) and

p?(bs, Ay) = inf ||ALy — byl (2.24)
yeD

is the degree of inconsistency. The regularization parameter « of the smooth-
ing functional is chosen by generalized principle of residuum, which is the follow-
ing.

If the condition:

[Ibsl|* > 6% + pi*(bs, Ap) (2.25)

is not fulfilled, the approximate solution of the equation (2.11) is x = 0. If the
condition (2.25) is fulfilled, then the generalized deviation (2.23) has a positive
root o and solution of the equation (2.11) is chosen as minimum x, of the
smoothing functional (2.21).

The fact that the generalized deviation p(a) = 0 has a unique positive root
when the condition (2.25) holds needs relatively fine analysis [50]. However,
finally we can find a regularized solution of the equation (2.11) by the following

iterative procedure :

1. Choose an arbitrary (sufficiently large) value of the parameter «

2. Minimize the functional M*(x) with respect to constraints respectively

solve the normal equations (2.22)
3. Evaluate the generalized deviation p(c)

4. Search for the root o* of the equation p(a) = 0 with accuracy ¢, it means

check the condition:

| ple) | < e (2.26)
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where ¢ = C x § and C' < 1 is a constant which depends on the desired

accuracy of the root o*

5. If the condition (2.26) is not fulfilled the procedure is repeated from the
point 2. Otherwise the minimum x,« is the regularized solution of the

equation (2.11).

In this short introduction, we did not mention another relatively large area of
investigations where ill-posed problems are interpreted within statistical frame-
work like [21] resp. [47] which contain also exhaustive lists of references.

It must be also noted that the instability in the examples shown (inversion of
the heat transfer equation resp. deconvolution) is substantial in the sense that
having arbitrarily accurate data (with an arbitrary small error - perturbation)
does not avoid the difficulties. Perhaps, this is the difference between another
class of problems where statistical approach seems to be fruitful. The latter being
a class of problems where the data are given with a large uncertainty.

There are also different methods working within the same framework as Tikhonov
regularization. Among others we mention sequential method of Beck [8] and
Mollification Method [36]. The conference proceedings [56] represent also a rich
collection, where all above mentioned approaches and their combinations are pre-

sented on some engineering application.
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Figure 2.3: An inverse problem associated with the rolling process. A profile is

sought, which will give flat-end after the processing.
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Chapter 3

Predictive Boundary Control of

Distributed Parameter System

In the following chapter we describe a predictive approach to the control of dis-
tributed parameter systems. To maintain a certain simplicity of description we
speak during the whole chapter about a concrete 1-dimensional distributed pa-
rameter system.

However, except the identification procedure, the approach presented here
can be straightforwardly generalized to more spatial dimensions. With the word
"straightforward” we mean that the basic conceptual framework would be the
same. On the other hand this step is by no means trivial because it involves replac-
ing all the basic blocks of our 1-dimensional procedure with the 2/3-dimensional
blocks with the same functionality. The complexity of the description and com-
putation grows radically during this replacement. But this is a common problem
for processes described by partial differential equations.

Our approach is built step by step starting with a simulation-prediction anal-
ysis in Section 3.2 proceeding through open-loop step-wise control to the final
close-loop predictive algorithm.

The identification step in Section 3.1 is auxiliary to our development but allows
us to clearly link our approach to the experimental verification on a laboratory
specimen. Therefore the identification procedure is particularly specialized (off-

line) to an identification of the parameters of the laboratory specimen.
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The basic idea of our approach to predictive boundary control of distributed
parameter system starts with a rather straightforward replacement of the basic
predictive control blocks (i.e. predictor, tracking error optimization and receding
horizon strategy) with similar blocks for a distributed parameter system. But
this replacement is not trivial in its aspects.

The main problem lies in the extreme ill-conditioning characteristic for dis-
tributed parameter system which do not allow to carry out the algorithm without
using special methods to solve it. Here an almost perfect analogy, between predic-
tive control and known schemes developed in inverse engineering field for ill-posed
problems solving, which we have found, is of considerable help. This basic analogy
is described in more detail in Section 3.4.

There is one well developed aspect of predictive control of finite dimensional
systems which we are lacking in the following sections and that is the modeling
and a treatment of disturbance - noise in the controlled system. However, there
are at least two reasons why we postpone this question to future investigations.
Firstly, the complexities involved even in a deterministic case are so big that
including of a noise model would draw us out of a time frame for this project.
Another important reason is that it seems to be practical to wait until at least
the deterministic scheme proves its usefulness and settles down to some canonic
design.

As was said at the beginning, for the sake of simplicity we would speak in this

chapter about the following concrete distributed parameter system:

0 5 07
—Y(z,t) —a FY(Q?, t) +bY (z,t) =0
T

ot
oY (L,t
(o, t0) = ¥ala), ¥ (0.0) = ufr), A g
OS{ESL’ tZtO; CL#O
= p=l (3.1)
c.p c.p

where: L is the length of the bar in meters; A is thermal conductivity coeffi-
cient; a® is thermal diffusivity coefficient in m?/s; c is the specific heat in kﬁ(;
p is specific mass of the bar in kg/m? and h is the heat-transfer coefficient in
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w
m?2 K-

the surrounding fluid in K.

In the remaining text Y (z,t) denotes the deviation of temperature from

As the notation suggests it is a heat conduction/heat transfer 1-Dimensional
equation which describes heat conduction in a metal bar from the heated end at
the spatial coordinate 0 to the isolated end at the spatial coordinate L with a
thermal diffusivity coefficient a?. The equation describes also a heat transfer to
the surrounding air expressed by term bY (z,t) where b contains the heat transfer
coefficient.

The control task is to drive the temperature along the spatial coordinate to
the prescribed reference sequence of temperature profiles with a boundary heating
represented by the function Y(0,t) = u(t).

The physical model described by the above equation consists in a metal bar
with a boundary heater on one side and an isolation on the other side. The
laboratory specimen is described in Figure 3.1.

There is also another reason why we have chosen this particular representation
of distributed parameter system and it is that there is certain hope to find a
dimensionality reduction procedure leading to a description of a rectangular slab

heating which uses exactly this sort of 1-Dimensional systems as subsystems.
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L - lenght of the bar
s(x,t) - spatial distribution of the
temperature at the time instant t
y(t) - boundary temperature
u(t) - input signal
1 - thermocouple

Figure 3.1: The experimental specimen consisting in the heated metal bar. On
the one end of the bar there is a heater. Another end is isolated. There are eight
thermocouples along the bar. The main physical processes are heat conduction from
the heated end and a heat transfer to the surrounding air. The power of the heater
allows a temperature range up to a 300 degrees Celsius. In the figure an exception

from the notation convention is made because the controlled variable here is not
meant to be the distributed state but the boundary temperature.
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3.1 Identification

Certainly, making a relation between equation (3.1) and the laboratory specimen
in Figure 3.1 raises a question about the accuracy of the system description given
by equation (3.1). As will be seen later, when the values of thermal diffusivity co-
efficient a? and heat transfer coefficient h are appropriately chosen the description
is rather accurate with exception of transient states with fast dynamics. However,
when the process slows down, the error drops back to a value of about 1%.

The accurate off-line identification of coefficients a, b is based on the observa-
tion that switching off the heater change the boundary condition to the isolated
end with Neumann boundary condition. Subsequently, this boundary condition
change pushes the system faster to the state with constant temperature along
the bar. Once we can suppose the temperature to be constant along the bar at a
sufficiently high value, we have a starting point from which the system behaviour
is described by a simple ordinary differential equation. From this equation the
accurate identification of the value of coefficient b (containing the heat transfer
coefficient) follows. Knowing the value of b we can accurately identify the value
of a by driving the system to a stable state or to a quasi-stationary process.

The above drawn method can be seen as a physical realisation of Furier’s vari-
able separation method because it is based on processes which drive the system
to the states where 2V (z,t) or %Y(m,t) vanish.

In the subsequent parts, the identification of coefficient b is described in more
detail. Then based on the latter the coefficient a is identified. The compari-
sion of simulated system which uses identified coefficients and measured data is
postponed to section 3.2 where we put also some notes about possible model

improvements.

3.1.1 Heat Transfer Coefficient /# and Coefficient b

The configuration of an experimental specimen on which the method has been
verified is in Figure 3.1. It consists of coper metal bar which is heated on one
boundary and isolated on other boundary. There are 8 thermocouples installed

on the bar which can be used for temperature profile verification.
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The offline identification is based on the fact that after reaching stable state
of the system on some higher temperature we can switch the boundary condition
to the isolated-end Neumann type condition simply by switching off the heater.
The system will reach relatively soon a state when the W(w, t) < e for all
0 < x < L i.e. the temperature along the bar is nearly constant. In our case
the system has been heated to the stable state with boundary temperature 260
degrees Celsius. Subsequently after switching off the heater the system reached
the state where € was under the level of noise at about 60 degrees. From this
moment the behaviour of the system is described by a simple first order equation
2Y +bY = 0.

The solution of the latter equation is Y (t) = Y (0)e=® where Y (0) is a tem-
perature at time ¢t = 0 and Y (¢) is a temperature at time ¢. From this we can
express parameter b as b = —% In %. The great simplification of the governing
equation provides a possibility for high precision identification of the heat transfer
coefficient.

The course of the identification experiment is shown in Figure 3.2 and in
Figure 3.3. In both figures the x-axis represents a spatial coordinate where point
0 (heater) is in lower left corner and L (isolation) is in lower right corner. The
y-axis represents a temperature in the range 0-270 degree. Each figure containg
a system evolution has a small subgraph in the upper right corner displaying the
boundary temperature as a function of time (heating).

The Figure 3.2 shows the whole experiment starting with full power heating,
then achieving a stable state at 260 degrees Celsius and then switching off the
heater and temperature fall to zero with heater switched off. The heated-end of
the bar is also isolated therefore if the heater is switched off the end of the bar
behaves as an isolated end.

The Figure 3.3 displays only the part of the experiment which is relevant
to the identification. It starts from the stable state which is visible as a thick
temperature profile. Then the heater is switched off and the temperature falls
to zero. There is also an interesting effect of momentary loss of convexity of the
solutions stressed by a circle.

The results of the experiment in terms of values of the coefficient b are in
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Figure 3.2: In the figure the x-axis represents a spatial coordinate where point 0
(heater) is in lower left corner and L (isolation) is in lower right corner. The y-axis
represents a temperature in the range 0-270 degree. The subgraph in the upper right
corner displays the boundary temperature in time (heating). The figure shows the
whole experiment starting with full power heating, then achieving a stable state at
260 degrees Celsius and then switching off the heater and temperature fall to zero
with heater switched off.
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Figure 3.3: A part of the whole system evolution from Figure 3.2. The evolution in
this figure starts with the stable state, covers the heater switching and temperature
fall to zero. An interesting momentary loss of convexity is labeled with the circle.
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Figure 3.4: The identification of parameter . The unit on the x-axis represents 10
seconds. The x-axis shows the computation of b in time going backwards

Figure 3.4. We use more and more points for computing b going back in time.
The moment when the state of the system is going to be significantly different
from a constant along the bar is labeled with the marker NC. The resulting value
is b = 0.002.

Once we know accurately b (resp. the heat transfer coefficient h) it is easy
to compute the thermal diffusivity coefficient by driving the system to a steady
state and solving the boundary problem for the first order ordinary differential

equation.

3.1.2 Thermal Diffusivity Coefficient a?

When the thermal system described by equation 3.1 resp. modelled by laboratory

specimen in Figure 3.1 is in steady state or in quasi-stationary process we can

suppose that W = 0.

Making the above assumption simplifies the description of the thermal pro-

cess to the following boundary problem for the second order ordinary differential
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equation:

fdzgw+tyw):o. (3.2)
Y(0)=Y,
dY (L) _
dx =0

The general solution of equation 3.2 is given as

Y = Cie™™ + Cye'™ (3.3)

with the characteristic equation r? = i The boundary conditions give Yy =

C1+C5 and Q = 5z Then the values ofthe constants C; and Cy are C; = %’if;—:i
and Co = < +62, —0+. Subsequently, we substitute C'; and C5 to the solution 3.3 and

write a value Y (L) of the solution in the space point L (the isolated end of the

bar). We obtain the following expression

YberL

Y(L) =225 (3.4)

1+ e?rL

When the value Y (L) is supposed to be known from the experiments the
constant r can be computed from the expression 3.4 using a substitution s = e"’.
After the substitution we obtain a quadratic equation for s, ks> —s+k = 0 where
k = Y5 Taking into the account the characteristic equation of (3.2) the value
of a follows.

The identification experiment is displayed in Figure 3.5. The system is brought
(heated) to a stable state at a boundary temperature 260 degrees. Then a quasi-
static decrease of the boundary temperature to 60 degrees occurs. The tempera-
ture decrease is linear in time and in each moment we can take a ”snapshot” of
the system state and use it to determine the coefficient a according to the above
described procedure.

The resulting values of the coefficient a during the whole process are in Fig-

ure 3.6. The relevant part of the data for identification, which consist in the data
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Figure 3.5: The system is heated to a stable state at a boundary temperature 260

degrees. Then a quasi-static decrease of the boundary temperature to 60 degrees
occurs.
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Figure 3.6: On the x-axis is a temperature and on the y-axis is a value of the
coefficient a. The relevant part of the data for identification of the coefficient a,
which consist in the data obtained from the quasi-static process are marked with
"quasi-static”. The arrow shows the direction of time during the system evolution.

obtained from the quasi-static process are marked with ” quasi-static”. The arrow
shows the direction of time during the system evolution.

It is also interesting to notice that the first part of the curve is almost linear
even if during the first phase the system is going through transient states which
are far from the stationary state for the respective boundary temperature.

It is well known fact that the coefficients a, b are temperature dependent. It
can be observed also on the results of the identification proposed above, however
including the temperature dependency of the coefficients makes the model non-
linear. This fact can be a considerable obstacle for certain approaches as is for
example for the modelling with Green’s functions. Then, a possibility how to
proceed is to choose appropriately a working point for the system.

As the results of simulation show this is well possible if the temperature range
in which the system is operating is not very large. The experiments made during
this work on an experimental device (see Figure 3.1) in the temperature range

0-300 degrees Celsius show that temperature range of few hundred degrees can
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be addressed with suitably chosen constant coefficients.
On the other hand, there are methods which are less sensitive to the above

mentioned non-linearity and we will use them in the following sections.
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3.2 Simulation - Prediction

As we have stated in the introduction of this chapter to implement successfully a
predictive control scheme we need a prediction tool for a distributed parameter
system. In fact the words prediction and simulation stress a two different points
of view to the same thing. It is the solution of the governing equation of the
system.

However, the solution i.e. the system simulation have to have some ”good”
features to be useful as a prediction tool for predictive control scheme. Mainly
we need a numerical stability and efficient computability.

In this section we analyse two approaches to simulation on which a predictor
can be built. An approach with integral representation and Green functions and

another one with finite difference schemes.

3.2.1 Integral Representation with Green’s Function

It is well known that the solution of the equation 3.1 can be expressed in the

following integral form:

Y (1) = /tt | U Gl et — 1) wie,T) drde (3.5)

where w(z,t) is a standardizing function (see [12]):

w(x,t) = Yo(2)d(t) + a®6' (z)u(t)

which includes an exciting function, boundary and initial conditions and 4(.)
is Dirac function. The heating of the bar is controlled through the boundary
temperature u(t) = Y (0,¢) and the task is to find such function u(t) - boundary
heating of the bar - which ensures us attainment of the required spatial distribu-
tion of the bar temperature Y (x,t) at specified time instant ¢,. In this situation
the relation (3.5) simplifies to the following form (see also Appendix A for a

derivation from first principles):
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Y(z,t,) = a® tj 885 G(z,&ty — 7) |e=0 u(7) dT +

b [ Gt 10) Yo(e) de (3.6)

where Yy(z) = Y(z,1%p) is a given initial condition. The Green function

G(z,€,t) for the above problem is:

G(z,&,1) Z exp (—bt — M\t) r () r(€) (3.7)
where @ (z) = sin @x = sin %x are eigenfunctions of Sturm-Liuville prob-
lem for (3.1) with eigenvalues A\, = %. It is worthwhile at this moment

to see (Figure 3.7) how the spectrum of the above Sturm-Liuville problem looks
for the concrete values of the thermal diffusivity coefficient a identified in the

previous section.
To be able to predict the system behaviour according the equation (3.6) it is

necessary to have an efficient computational procedure for the kernels

o G(,6,1) |e=o= Gog(,1)

G(.Z‘, ga T) = GT(x’ 5)

A simple derivation from (3.7) or a derivation from the first principles accord-

ing to Appendix A shows that

Goe(z,1) Z (2k + 1) exp (—=bt — \gt) or()
(3.8)

§ =73 exp(—IT — WD)eu()n(€)

An optimized numerical procedure for computation of the above kernels (Fourier
series) is a subject of the next subsection. Then we conclude this part with sub-
section 3.2.1.2 providing a discussion of numerical difficulties near the heated

boundary.
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The spectrum of Sturm-Liuville problem
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Figure 3.7: A sensitivity of the spectrum of Sturm-Liuville problem to the change of
thermal difussivity coefficient. The coefficient range is used according to the identified
values for the experimental device. On the x-axis are the values of k£ and the y-axis
represents the eigenvalues size.
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3.2.1.1 Optimization of Green’s function computation

As was noted in [49] (pp.218), the summation of the Fourier series is itself an
ill-posed problem. Even if the ill-posedness is weaker than that of the heat con-
ductivity inversion it is still good to know the reasons for the numerical problems
which sometimes occur. During the computation of the Green’s function it can
be observed that slight changes in the algorithm, or bounds, are leading to very
different results.

We propose an optimized method for the computation of the Green’s function
which contains accurate error bounds. The advantage of such a method can be
seen when accurate results are needed near zero in time and near the heated
boundary in space. In this case the points near time zero can easily require many
thousands of the terms in the series but as the time increases to seconds this
number immediately drops to less than 10 (see the numerical study at the end of
this section).

We first turn our attention to the kernel Gge(z,t) and later it will be seen
that the kernel Gr(z,&) can be expressed in a similar form.

The following well known convergence criterion together with a bound is used

in the sequel:

Theorem 2 (Dirichlet criterion) Let s, = >}7_,ax is an infinite series of
complex numbers and all the partial sums are bounded by |s,| < K. Let o
15 a monotone sequence of real numbers with limy_, . ap = 0. Then the series

> or_o Qray s convergent and | Y52 o agay| < K|ag.
The algorithm is based on the following lemma:

Lemma 3 Let 0 < z < L and 0 < t. Ifl > ko = [(f—a\/g— 1)/2] then the
residual part R(l) = Y 32,(2k + 1) exp (—bt — Ait) () of the series for Gae(z,1t)
is bounded by |R(1)| < (20 + 1) exp (=bt — \jt) —2= where T = 2%

|sinZ| 2L
Proof. Let us denote as My = (2k+1) exp (—bt — A\xt). My, > 0 is positive for
all £ > 0. M, as a function of £ > 0 has only one extremal point as follows from

the properties of exponential function. This extremal point can be computed

taking the derivative of M} as a function of £.
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L (@h + 1) exp (—bt — 1)) = 0

dk
b= 122 - 1y

Thus for all £ > k¢ the sequence M), is monotonically decreasing to zero.
Now, recall that

L cos £ — cos(n + %
> sinkz = —2— (Z 2) (3.9)
=0 2 sin 5

n sin(n + 3)z +sin 2

> coskx = in(n 2,)$m b (3.10)
=0 2sin 3

The above sums are bounded by | >}_, sin kz| < 1/|sin £,
| Yp—icoskx| < 1/|sinZ|. Let us bound the sum 7%, sin(2k + 1)z. Use the

substitution y = 2x

> sin(2k + 1)z =) sin(ky + 5) = cos 3 > sinky+sin= Y cosky
k=0

k=0 k=0 k=0 2
" 2
in(2k + 1)z < _
| 2 sin(@k + el < 1550 = 15

Note also that by the same reasoning | Y p_,sin(2k + 1)z| < |Sh2m| because
YR sin(2k 4+ 1o = Yi=h sin(2k(20 + 1))z

Finally, using a substitution T = 7% we are prepared to obtain the lemma

statement because of Dirichlet criterion.

> 2
= M, sin(2 1)z| < M, =
IRO) = |32 My sin(2k + 17| < My o

= (2 1 —bt —
(20 + 1) exp (—bt )\lt)|sz’nf|

QED

If an absolute error is needed, the number of series members can be computed

in advance. In the case of relative error, the algorithm must check the ratio:
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Yho(2k +1) exp (bt — Akt)sok( )
(20 + 1) exp (—bt — \jt) =2

|sinx|

Finally, concerning the extremal cases, apparently Gs¢(0,¢) = 0 for 0 < ¢ but
for ¢ = 0 the value of G¢(x,1) is not defined because the series is divergent.

The kernel Gr(z, ) represents a more complicated case. First of all, Gr(x, &)
is not defined when 7= 0. For T > 0, Gp(z,£)=0 if x = 0 or £ = 0. Except for
the special case when z = £, similar reasoning can be used as in Lemma 3 when

we take additionally into the account the following:

1 (2k + 1)m

or(r)pr(§) = §[cos - 2k +)m

(x — &) — cos 5T

(z +9)). (3.11)

Therefore

| 1 n 1
= |sin(@— &)  |sin@+E)|

|290k

We can prove

Lemmad4 Let 0 < < L, 0< < L,x#& and 0 <T. Ifl > 0 then the
residual part R(1) = Y32, exp (—bt — Met) o (x)or(§) of the series for Gr(x,&) is

bounded by |R(1)| < exp (—bt — A\it) <|sin(;_0 + |Sin(;+§)|) where T = IE.

A same note concerning the relative error of a computation applies as before.

The case when x = £ needs a special consideration because in this case the
term 7o ok (2) k() = Xp_ vi(x) is not bounded. However, the series is con-
vergent because of the exponential part. To know the error bounds we can write
using (3.11) that

Gr(z,xz) = % > exp (=0T — A\ T) cos(2k + 1).0 —
1 o0
-7 > exp (—bT — N T)cos(2k +1)(T+7) =

1 & 1
=7 > exp (=T — NT) — I > exp (—=bT — N\ T) cos(2k + 1) (2z)
—0 k=0

02



For the second term above, by the same method as in Lemma 3 we obtain the
error bound |R(l)| < exp (—bT — )\lT)m. The first term is more interesting

because it contains a new case of series with positive elements for which we can

propose the following method

Lemma 5 If] > (saLT — %) then the residual part

R(l) = 32, exp (=T — \T) of the series Y 5o exp (—bT — A\eT) is bounded by
|R(1)| < exp (=bT — NT +1)2'7" where @ = Z%, a® being the thermal diffusivity
coefficient.

Proof. Let > 32,z is the original series with positive elements z; > 0 for
which we want to derive an error bound. Denote R(l) = Y32,z the residual
part of the series.

The main idea of the method is that certain fraction of the ”convergent”
character of the series is extracted via multiplying and dividing >277, z—:ak by
a suitably chosen convergent series with positive elements. oy is chosen so that

Tk
o 8O€s

we know the sum A = > a4 and at the same time the sequence
monotonically to zero. Then by virtue of Dirichlet criterion we obtain |R(l)| =
| 3% Skak| < SLA. It is even better if we know explicitly also the residual
part A(l) = 332, oy of the auxiliary series. Then we can improve the bound as
IR()| < 2A().

For the special case of the series in the lemma statement, we choose oy = ¢,
then the residual part equals A(l) = ¥, ¢* = %. The last question is to find
lo and ¢ so that the sequence ‘”“’(_(;77,;_)‘@

k>l

is monotonically convergent to zero for

exp (—bT — \eT)
q*
The requirements can be reformulated in terms of derivative of the exponent

= exp (—bT) exp (—(2k +1)*@°T — k1ngq)

in the above expression as

4(2k +1)@*T +1Ing > 0

Substituting ¢ = 1/2 we obtain the statement of the lemma by virtue of the

Dirichlet criterion

93



11
k><———>.
= \8aT 2
QED

In the next section the kernel Gi(z,t) = 1332, 55 X

x exp (—bt — A\gt)@x () is also mentioned from the point of view of numerical
properties. Therefore an algorithm based on the following lemma 6 can be pro-

vided:

Lemma 6 Let 0 < 2 < L and 0 < t. If1 > 0 then the residual part R(l)

PPl m exp (—bt — A\gt)px () of the series for Gi(x,t) is bounded by |R(1)| <

1 ) o
@+1) ©XP (—bt — /\lt)m where T = 7.

The proof is analogical as for lemma 3. The series is convergent also for ¢t = 0.

To illustrate how the above principles can be used to build an efficient compu-
tational procedure we give in Figure 3.8 an example of an algorithmic primitive
for the computation of the kernel G (z,1t).

Providing an analysis of error behaviour in the computation of the above
mentioned kernels, there is a question how the kernels actually behave, i.e. how
many series term are required to obtain a given relative accuracy depending on
time and space coordinates in which the kernels are computed.

In Figures 3.9, 3.10 we can see a number of the series terms as a function of the
time in the most critical regions for the kernels computation. All computations
have been done with relative precision 0.0001 i.e. the fourth decadic digit was
required to be valid.

It can be concluded, based on the above numerical study that the described
analysis actually provide an efficient and robust means for computing of Green’s
functions for our problem.

Finally, having a reliable procedure for the respective kernels, we can visualize
the kernels. In Figure 3.12 we have Gr(z,£) and in Figure 3.11 the kernels
Goe(x,t) and Gy (z,1).
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double d_green(double x, double t, double a, double b, double 1, double eps)

{

10 double series_term;
20 double lambda;
30 double x_over,a_over,maj_term,sum;

40 int k_mono;

50 num_of_ele=0;

60 sum=0.;

70 x_over=M_PI*x/(2.*1);
80 a_over=M_PI*a/(2.*]);

90 lambda=(2.*num_of_ele+1.)*(2.*num_of_ele+1.)*a_over*a_over;
100 maj_term=(2.*num_of_ele+1.)*exp(-(lambda+b)*t);

110 series_term=maj_term*sin((2.*num_of_ele+1.)*x_over);

120 sum=sum-series_term;

130 num_of_ele++;

140 k_mono=(int)((1/(2.*M_PI*a))*sqrt(2./t)-0.5)+1;

150 while(1) {

160 lambda=(2.*num_of_ele+1.)*(2.*num of_ele+1.) *a_over*a_over;
170 maj_term=(2.*num_of_ele+1.)*exp(-(lambda-+b)*t);

180 series_term=maj_term*sin((2.*num_of_ele+1.)*x_over);

190 if(num_of_ele>=k_mono) {

200 if(fabs(series term) <= PRESNOST_PC){ break;}

210 if(fabs(sum*sin(x_over) /(maj term*2.)) > 1./eps) {break;}
220 }

230 sum=sum-series_term;

240 num _of_ele++;

250 }

260 sum=M_PI*a*a*sum/(1*1);
270 return(sum);

}

Figure 3.8: Algorithmic primitive for the kernel Go¢(z,t). The variable num_ofele
counts series terms, the variable lambda contains the eigenvalues of the Sturm-Liuville
problem and the variable maj_term contains the majorization part of the series terms.
The constant PRESNOST_PC represents computer floating point accuracy.
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Figure 3.9: The numerical study of the number of the series terms as a function of
time for the most critical spatial domain. The upper figure is for the kernel Gg¢(2, )
and the lower figure for the kernel G (z,t). The relative precision is 0.0001 and the
kernels are computed along the line x = 0.000297 in space for 1000 equidistant time

points. On the x-axis is the time in seconds and y-axis represents the number of
terms.
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Figure 3.10: The numerical study of the number of the series terms as a function
of time for the most critical spatial domain for the kernel Gr(z,&). According to
the analysis in the text, three different sub-kernels are computed. One for the off-
diagonal case when x # &£, another for the diagonal case when = £. The latter one
is split to two sub-kernels, the first being a cosine Fourier series and the second is a
series with positive terms. The relative precision is 0.0001 and the kernel is computed
along the line x = 0.000297, & = 0.000594 for off-diagonal case and along the line
x = 0.000297,& = 0.000297 for the diagonal case. On the x-axis is the time in
seconds and y-axis represents the number of terms.
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Figure 3.11: In the upper figure is the kernel Gg¢(x,t) and in the lower figure the
kernel G1(x,t). In both figures the more dense grid is the time grid. The point (0, 0)
is labeled by a marker.
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3.2.1.2 Accuracy of the simulation near the heated boundary

The major numerical problems encountered near the boundary during the simu-
lation and inversion are related to the kernel Gag(x,t). Therefore, let us suppose
for the simplicity that in (3.6) the initial condition Yj(z) is zero. Then the state
of the system in a certain time instant ¢ can be written according to equation
(3.6) as:

Y (z,t) = o /t: Goe(z,t — T)u(r) dr (3.12)

A numerical study of the model (3.12) with the parameter values for the actual
experimental device (see Figure 3.1) which is illustrated in Figure 3.13 shows that
when we use equidistant grids in space and time they are not well adapted. The
time grid must be much more dense than that in space in order to obtain sufficient
accuracy near the boundary x = 0. In Figure 3.13, the results of 4 computations
with the same grid in space containing 20 points and 4 different grids in time,
one with 20 points, another with 200 points, next with 2000 points and the last
with 4000 points, are presented. The results show that the 200 point grid is still
not sufficiently dense to get reasonably accurate results.

One possibility how to deal with the above problem (which is actually used in
the open loop step-wise control described in section 3.3) is to use non-equidistant
B-spline approximation with knot points which are more dense near time zero.

Another possibility is the following. The integral equation (3.12) describes
the solution only in the interior (0 < z < L) of the spatial domain. Using the
Fourier separation of variables technique and deriving from first principles, as
is described in detail in appendix A (esp. equation (A.15)), we can obtain the

following description of the solution for the whole spatial domain 0 < z < L,

Yz, t) =ult) + [ Gi(w,t— )= 2(r) — bu(r)] dr (3.13)

where




25 | ‘
2 20%20? —o—
2 20%200’ -+
2 20%x2000B’ B
2 20%4000” ~x—
20 - |

[ A0

Al
"\\\\\\\\\\\\\\\\\

Figure 3.13: A numerical study of the relation between the space and time grids for
the equation (3.12). In the upper figure the x-axis represents spatial coordinate in
meters and the y-axis the temperature in degrees Celsius. The boundary condition
was constant, namely u(¢) = 20.. The lower figure shows the same four curves in 3-D
view. In this figure the most accurate result (the densest grid in time) is the nearest
to the observer.
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Figure 3.14: A numerical study of the relation between the space and time grids for
the equation (3.13). In the upper figure the x-axis represents spatial coordinate in
meters and the y-axis the temperature in degrees Celsius. The boundary condition
was constant, namely u(¢) = 20.. The lower figure shows the same three curves in
3-D view. In this figure the most accurate result (the densest grid in time) is the
nearest to the observer.
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= 25 exp (<bt = At) #n(2) (3.14)
T =0 2n+1

The advantage of the kernel Gy (z, t) is its better numerical behaviour. The se-
ries for this kernel converges faster and the grids are better adapted. A numerical
study in Figure 3.14 clearly shows the difference in the behaviour near the bound-
ary between the kernels G (z,t) and Gy(z,t). For the kernel G;(z,t) we have
computed only 3 solutions with the grids (space grid x time grid) 20x20, 20x200
and 20x2000 because even the 20x20 grid gives sufficiently accurate results.

However, the cost of this improvement is that the intuitive relation between
the solution of the integral equation (3.12) and the function u(¢) is lost. As can
be seen from (3.13), during the inverse problem solution there are two steps,
firstly, the integral equation has to be solved and then the first order ordinary
differential equation must be solved.

To see the relation between the system description (3.12) and (3.13), the
equation (3.13) can be modified by integration by parts to give

Y(z,t) = u(t) — Gi(z, 0)u(t) +
t
+a? / Goe(z,t — T)u(r) dr (3.15)
to
This gives the same description inside the spatial domain as in (3.12) because
for 0 <z < L, Gi(x,0) = 1. But for the point z = 0 the value G;(z,0) is zero as

well as the value of the integral kernel in (3.15) leading to the value u(t) at the

boundary.
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3.2.2 Simulation with Finite Difference Schemes

In this section we describe an approach to the predictor based on a class of well-
known numerically stable finite difference schemes. The finite difference method
is very well developed therefore in this introductory part we basically follow the
standard approach [54, 32]. The basic idea of finite difference method is that we
choose a finite set of points (usually as a rectangular grid) in the domain in which
we are solving the equation. Then the derivatives of the solution occurring in the
partial differential equation are substituted by linear combinations of function
values (finite differences) in the points of a given grid. This substitution leads to
a finite system of linear equations with the values of a solution in the grid points
as unknowns.

Because we would like to extend the prediction also to the more general cases
where the thermal diffusivity is a function of temperature we start with a more

general setting of the basic parabolic partial differential equation.

oYy ay 0

)
Cor +LY = c(m,t)ﬁ ~ % (p(m,t)%> +q(z, )Y =f (3.16)

in the domain R = (0,L) x (0,7, with an initial condition
Y(z,0) = g(z), 0<z<1

and a boundary conditions (Dirichlet problem)
Y (0,8) =70 (1),
Y(L,t) = vB(1), 0<t<T

or (Newton problem)

(IOY)(t) = —p(0,1)55(0,1) + O ()Y (0, 1) = v (),
(IY)(t) = p(L, 1) 52 (L, 1) + BB ()Y (L, 1) = 4B (1),
0<t<T.

¢e,p,q, f, B9, B 4@ ~(I) and ¢ are known functions, where we suppose for

simplicity that they are continuous and the function p has continuous derivative
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with respect to the variable z in R. Moreover the functions ¢ and p are positive
in R and the functions 3 and BX) are nonnegative in < 0,7 >.

Let us construct a rectangular grid as an intersection of the lines x = z; and
t = t;, where zy = kh, k =0,...,n, h=L/n, t;, =17, 1 =0,...,r, 7 = T/r and
n,r are integers.

Using so called Marchuk identities ([54] page. 252) we can approximate the
parabolic equation (3.16) with the following class of difference schemes given by

the parameter a:

y® _ y -1
[ac(zk, t) + (1 — a)c(xy, 751_1)]% -

(67
— oz plan = h/2,0) Y0, — [p(ax — h/2, 1)V +

l—« 1—
B2 {p(xk - h’/2) tlfl)Y;c(_ll) -

—[p(xk — h/2,t 1) + p(ax + h/2, 75171)]5/}9(1_1) +
p(zk + B/2, 1) Y)Y + g, 1)V +
+(1— @)Q(ﬂfk,tZ—l)Yk(l_l) = af(zk, t) + (1 — a) f(zr, tie1)

(g + h/2, 1) Y} —

(3.17)
k=1,..n—11=1,..,r
The initial condition can be written as
YO = g(z),k=0,....n. (3.18)
The boundary conditions for the Dirichlet problem are
Yb(l) =70, YO = D)1 =1, ..., (3.19)

resp. the boundary conditions for the Newton problem can be rewritten as

, v _ 30
§h[ac(x0,tl) + (1 - a)c(xo,tlfl)]% +
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Y1(l) _v®

Y.
e 1 89 )Yy ] +

Y(lfl) _ Y(lfl)
+(1 = a)[=p(zo + h/2, 1) - 0
1-1)

1 1
+§ha(J($o,tl)Yo(l) + §h(1 - a)Q(xo,tl—l)Yo( =

+a|—p(zo + h/2,1;)

+ 8%t )Y V] +

1 1
= §haf($0,tl) + §h(1 —a)f(zo, ti1) +
+ary O (1) + (1 = )y (1),
1 vy — yi-1)
g hlac(an, tr) + (1 = a)e(@n, ti) ] =H——"—+

Y(l) _ Y(l)
+alp(z, — h/2, tl)% + BB ()Y, 0] +

(1= lp(en = /2, 1) ==t + AP ()Y

1 1
+§hQQ(xn7tl)YT§l) + Eh’(]‘ - a)‘](xnatl—l)yn(l_l) =

= ;haf(xmtl) + ;h(l — ) f(Tn, ti-1) +
+ay P () + (1 — )y D (t-1),

l=1,..r.

T

the value T we obtain

h

l l _ T _
ADY® = APyl 4 ﬁ[af(l) + (1= a)f Y]
l=1,..,r

(D)

where the matrices Ay’ and Ag) are defined as follows

T

PO
h? ’

AY =aC® 4 (1-a)Cct D +q
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(3.20)

To describe the algorithm to which the above formulas with respective initial
and boundary conditions are leading we can use a matrix notation. Let Y® is
a vector of the solution with the coordinates Yk(l). If the equations (3.17) are

multiplied by the integration step 7 and the equations (3.20) are multiplied by

(3.21)

(3.22)



T

! _ -
AP =aC® 4 (1-a)Cct D —(1- o) 5P,
l=1,..r.
The matrix C¥ = [cg,)n] is diagonal, P = [p,(c?n] is a tridiagonal matrix
and £O = [f] is a vector. The dimension of the above matrices as well as

the dimension of the equation (3.21) depends on the boundary conditions. For
the case of Dirichlet conditions on the both ends of the domain L we have the
dimension n—1, for the case of Newton conditions the dimension is n+1. Problems

with mixed boundary conditions have dimension n as will be our particular case

later.

For the case of pure Dirichlet conditions resp. pure Newton conditions we can

write
k=1,
k=1,
k=1,
k=1,
k=1,
k=0,
k=2,

an_la
,’I’L-l,
)n_la
y 27
)n_la
)n_la
’n_za

o = ok, ),

resp. for the Newton case
ey = %C(xoatl),

chp = ok, n),

1
nglzz = Ec(xn; tl)a

pl(cl/?: = p(xk - h/2a tl) + p(xk + h/25 tl) + hQQ(CUk, tl);

l !
pl(c,)k—f—l = p,(cll,k = —p(xr + h/2,4),

resp. for the Newton case

o = plzo + /2, 1) + hBO (1) + %h2Q(JCo, ),

PR} = plax — h/2,0) + p(ax + h/2, 1) + hq(z, 1),
i = plan = /2,8 + D (1) + g t),

l !
Dkt = PO = —pla + h/2,1),

O = B2f (21, 1) + p(mo + h/2, )70 (),
fr()) = B2 f(z, t1),
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£P4 = B2 f(@ne1,t) + plza — h/2,0)7 ) (1),
resp. for the Newton case
= %hzf(l"o,tl) +hyO(ty),
k=1,..,n—1, fO=nf(xt),
F0 = S () + b 1)

The matrix A(Ul) is tridiagonal for any grid (i.e. for any value of the ratio
7/h?). For a = 0 it is a diagonal matrix therefore it is easy to compute the
inverse matrix, so in this case the method would be explicit. In all other cases we
have implicit methods and for each time discretization point ¢; a solution of n —1
resp. n + 1 tridiagonal linear equations must be found. An appropriate method
for this task is a standard Gauss elimination method for sparse matrices.

A particular case occurs when o = % The method is called Crank-Nicolson
method and has particularly good features. In this case the discretization error
has an order O(7? + h?) and therefore it is natural to take 7 = O(h). Let 7 = wh
where w; is a positive number. The equation (3.21) can be multiplied by 2h%/7 to
make the elements of matrices Ag) Ag) approximately as big as is the function

p. In the original version the elements of these matrices are of order p/h. We

obtain
ADY®O = ROy 4 g0 4 gan), (3.23)
where

~ h
Ag) _ w_(c(l) + C(lfl)) + P(l), (3.24)

1

AD = e 4 g0y _pey
%1

The advantage of the above scaling with the factor 2h? /7 depends on the size
of the coeflicient p. If p is very small it is better not to use this scaling because A is
usually small so p/h will be of better size with respect to the computer precision.

The above general scheme can be specialized for the particular problem (3.1)
which is considered in this work. In this case ¢ = 1. To incorporate also nonlin-

earity caused by dependence of a, b on temperature we suppose that the functions
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p(z,t) = a(Y(x,t)), ¢(z,t) = b(Y(z,t)) are not constant. The nonlinearity can be
treated by "freezing” the value of the parameters during one integration period
and using the same scheme as for the linear case. Note that because of mixed
boundary conditions the dimension of the finite difference scheme is n.

We obtain the following algorithm in Figure 3.15.
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T

p(z,t) = a(Y(x,t), q(z,t) = b(Y(z,t)), w= o2

(3.25)

Ag)y(l) — Ag)y(l—l) + w(f® 4 £0-1)
AY = C +wP®, (3.26)
AY =C—wpP®Y,

k= 1, , N — 1, Ckkp = 1 (327)
1
Chn = 3
2
4 h h 2
k=1,...,n—1, Dik :p(xk - §’tl) +p($k + 5,155) +h q(mk,tl)
h
pi,k-l—l = pi:—l—l,k = —p(wp + §,tl) (3.28)
h 1
Pan = p(xk — =, t1) + =h’q(zk, 1)
2 2
! h
fi =plxo + =, t)u(t) (3.29)

2
k=2, ..n, f,ézO

Figure 3.15: A finite difference scheme for the problem (3.1)
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3.2.3 Comparison of Simulations with Experiments

Having fully developed both simulation methods (integral representation with
Green’s functions, see section 3.2.1 resp. finite difference schemes, see section 3.2.2)
we can compare them with experimental data measured on the real laboratory
system in Figure 3.1. In this section we mainly compare the methods against the
experimental data and the comparison between the both methods we postpone
to the concluding section when more information will be at the disposal.

This is also a moment to discuss identification of unknown values of the model
parameters, namely the thermal diffusivity coefficient a? and the coefficient b.
When we plug the results of identification procedure to the model and compare
the results with a real behaviour of the experimental system the quality of the
parameters is clearly seen. We obtain also some knowledge about the directions
of further model improvements.

During the experiments, if there was a need to follow certain function on
the boundary or to stabilize the boundary temperature on certain value a PID
regulator has been used with pre-tuned parameters. However, the quality of this
control is not relevant for the simulation aspect of this work, because the boundary
data has been measured and they are exactly used during the system simulations
as a boundary condition, so that the simulator can follow real evolution of the
system. The PID regulator merely provided a certain guide-lines of the system
development so that it was not chaotic. Also it provided a possibility to measure
steady states of the system relatively easily.

The system states during the experiments has been stored, the boundary
condition being an integral part of the data. From this moment on, we can forget
about any controller which was responsible for obtaining the data. What we have
now are dynamic evolutions of the system and our aim is to tune the simulation
methods so that we obtain good fit between the experimental data and simulated
system behaviour inside the spatial domain.

First off all, we describe the experimental data and some parameters and no-
tations which will be constant during this section. From large set of experimental

data we have chosen the following three experiments on which we illustrate the
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Figure 3.16: The monotonic dynamic process. For the axis description see Figure 3.2.

phenomena of further interest.

1. Quasi-static process. The experiment starts from a stable state on a
high temperature. Then the system is brought through quasi-static process
to the stable state in the lower part of the temperature range. With the
term quasi-static we mean that the decrease of the boundary temperature
has been so slow that we can suppose that the system is going through a
continuous set of steady-states. The experimental data are in Figure 3.5

together with a development of the boundary temperature.

2. Monotonic dynamic process. The system evolution starts in a steady
state with a low temperature, then the boundary is approximately linearly
brought to the higher temperature where the system is stabilized. The
former process occurs twice during the experiment. The experimental data

are in Figure 3.16.

3. General dynamic process. The system is brought through randomly cho-
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sen transient and steady states. The experimental data are in Figure 3.17.

The above three sets of data are further referenced by their respective num-
bers. During this section some parameters are supposed to be constant and there

are also another assumptions valid for the whole section, namely:

e The discretization of spatial domain for the simulation has dimension 20.
This density (denoted by N) provides a reasonable accuracy compared with
the experiments where we have 8 spatial data in equidistant intervals. The
length of the spatial domain (the length of the heated bar in the experi-

mental device) is 0.297m.

e The maximal temperature range of experiments is 0-300 degrees Celsius

given by the construction of the device.

e As a measure of the fit of a solution Y (z,¢;) = Y;(z) in a time instant ¢; we

use the discrete L, norm defined as

I D& = | 5 3 D20) (3.30

where D?(zy) is interpreted here as a deviation between the experimental

and simulation data.

e The number of time steps is denoted by S and the time domain by 7. The
overall fit of a solution on the whole integration domain (< 0,L > X <

0,7 >) is described by a residuum which is defined as follows

Res = J =51 Dela) 1,00 (3.31)

k=0

e The experimental data are stored with a time step 1 second. This is the
precision with which we always provide the boundary condition for the
simulations independently of the step length of simulation as well as step
length used for residuum computations. The time domain of the typical
experiments ranges from few thousand seconds up to 8000 seconds for the

quasi-static process.
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Figure 3.17: The general dynamic process. For the axis description see Figure 3.2.

e The noise in experimental data has a L, discrete norm (a standard deviation
along the spatial domain) at low temperatures about value 0.1 and at high
temperature about 0.5 . Therefore we cannot expect the residuum to be
less than about 0.3v/T over the whole integration interval 7.

e In all figures where the states (or differences of states) are shown the x axis
corresponds always to the spatial domain with length L = 0.297m and the
y axis represents a temperature in degrees Celsius. The temperature range
maximal and minimal values are written on the lower and upper part of the

axis. The scales are always linear.

e If it is not explicitly stated differently, all simulations are made with the
values of coefficients identified in the section 3.1, namely a = 0.0095,b =
0.0020.

First of all, we would like to know the overall performance (precision) of the

simulation methods. Therefore both methods are run with the most complex

74



data 3. The results are in Figure 3.18, where two figures are placed, each for
one method. On each of them there are two curves drawn in the same scale,
one represents the boundary temperature and the other one the Ly norm of the
difference between the simulation and real data (simulation error).

The results are good with the peak error under 2% and most of the time
under 1%. However, according to the level of noise we can think about the value
of residuum 0.3v/T = 26.83 and the residue for both methods are in order larger.
In the next Figure 3.19 the same simulations are shown but different scales are
used for temperature and simulation error to be able to distinguish in which
situations the Ly norm of the simulation error grows.

A basic observation which can be made in Figure 3.19 is that the error in-
creases rapidly during the transient states and then drops back during the steady
states of the system. This fact is even more apparent in Figure 3.20 for the data 2
which has been chosen to isolate this effect. In this figure the simulation error is
also shown with a different scale for the error as for the boundary temperature.

The next question about which we can obtain more information from the
comparison between real data and simulations is the computational complexity
of both methods. We use the most complex data set 3 for this purpose. First of all
a relation between step length and residuum is computed for the finite difference
method. Then we choose the same step length of the Green’s function method
and find a relation between the integration sub-step inside this basic step and a
residuum.

The results of the above procedure are in Figure 3.21, where on the first graph
is a relation between the step length and the residuum for the finite difference
method. The method stays at the minimal value of the residuum up to the step
length 40sec. Therefore we choose the same step for the Green’s functions as
an integration step. Then the number of discretization steps inside this basic
interval is measured. The relation between the number of discretization steps
and the residuum for the basic step length 40sec for the Green’s function method
is in the lower graph in Figure 3.21.

It must be stressed in favor of the Green’s function scheme that the above com-

parisons are made with equidistant grid for the integration in the formula (3.5).
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Figure 3.18: Simulations versus experimental data accuracy.
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Figure 3.20: Simulations versus experimental data accuracy. A more detailed study
of an approximately monotonic process. On the x-axis is a time scale from zero to
2000 seconds. For explanation see the text.
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As the analysis in section 3.2.1.2 has shown the efficiency can be improved by
choosing non-equidistant grid with higher density near the zero in space. Indeed,
such option has been used in the open-loop scheme described in section 3.3, where
by choosing more dense description near the zero in space reasonable accuracy
has been achieved with number of discretization steps of about 10.

However, even reducing the density of grid for Green’s function scheme, it
still seems to be considerably slower than finite differences because the matrices
are dense compared with tridiagonal matrices in finite differences. So, the grid
density 3 points for Green’s function gives approximately the same complexity
as 1 step of finite differences. Therefore, if 10 points grid is required for Green’s
function integration we obtain about 3 times slower simulation.

The last set of questions is related to the identification of the thermal diffusiv-
ity coefficient a? resp. the heat transfer coefficient h. The experiment on which
we consider the identification questions is the one in Figure 3.5. We have already
used the data set in section 3.1 to identify the value of parameter a. The choice
of experiment already suggests that the focus of this part will be on the thermal
diffusivity coefficient. Indeed, there are more reasons why concentrate on a2. The
coefficient a? is a thermo-physical material constant therefore it can be usable in
different circumstances where the same material is involved. This is not the case
of coefficient b containing the heat transfer coefficient A (also called the film coef-
ficient). The latter one is in a very complex way dependent on conduction (also
convection in the case of fluid) state of surrounding material which makes the
coefficient in fact totally dependent on particular experimental or technological
devise. As the above simulation results have shown the value which we have
identified in section 3.1 gives reasonable accuracy. Therefore in the following we
satisfy ourselves with the constant value 0.0020 identified earlier.

As was already noted at the end of section 3.1 it is a well known fact that the
coefficient a? is thermally dependent. This dependency makes the model nonlin-
ear therefore in the rest of this section only finite differences will be considered
for simulation.

First of all, the shape of the simulation error can be visualized (see Figure 3.22)

providing a possibility to identify some pattern in the data.
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of a quasi-static process.
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Indeed, there is an observable pattern in the data which can not be caused
by a noise. This is supported also by the value of residuum which is 270 but
concerning the level of noise and the integration interval we arrive at a value
approximately 26. Therefore, the problem is basically the shape of the curve not
the noise at this stage.

A look back to Figure 3.6 can lead to considering as a first possibility that the
nonlinearity might be of first order, so that an approximation of the heat diffusiv-
ity with a linear function of temperature should improve the value of residuum.
But, it does not sufficiently, leading to a conclusion that the nonlinearity is of
higher order in a significant sense.

In Figure 3.23 four possible curves of the relation between a and temperature
are suggested and a residuum is computed for all of them. The curve 1 is a
constant lying in the middle of the parameter range obtained before in section 3.1,
curve 2 is a linear approximation and the curves 3,4 have been obtained by an
exhaustive search in a 1 dimensional parametrized space of functions with the
same starting and ending point.

The last set of experiments which we did used Levenberg-Marquart algorithm
with Tichonov regularization in a Minpack implementation. These experiments

have revealed several facts.

e There is a systematic error on the thermocouple 1 resp. 4 with a correction

-8 resp +6 degree’s Celsius at the maximal temperature.
e The measurements are not convex, therefore a convex hull filter can be used.
e There is a strong coupling between the parameters a, b.

e The structural aspect must be emphasized i.e. the system model must be

updated from a structural point of view to obtain better results.

Using any of the above filters on data was accompanied by a significant de-
crease of the residuum value. Therefore we conclude that the accuracy of mea-
surement must be improved in order to obtain more precise values of a, b resp.
the experiment should be restructured to minimize the influence of the film coef-

ficient.
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Figure 3.23: Simulations versus experimental data accuracy. A more detailed study
of a quasi-static process.

We stop here with a note that an identification of temperature dependence of
thermal diffusivity as an severely ill-posed problem requires special methods to
be successfully done particularly in the sequential setting. They are a subject of

current intensive research in inverse engineering field as can be seen in the recent

book [56].
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3.3 Open Loop Step-Wise Control

In the following section we describe briefly a method developed by the author
and others [40, 41] for open-loop step-wise optimal boundary control of thermal
system. The method uses an integral representation, as described in detail in
sections 3.2.1, 3.2.1.2 and in appendix A, which is augmented with a splines dis-
cretization. We focus here mainly on a description of ill-posed problem inversion
and overall algorithm description. Other details can be found elsewhere [40, 41].

The main reason for the numerical difficulties in the boundary control of
thermal process inside a heated solid material stems from the ill-possednes of
the model inversion which always is, in one way or other, embedded within the
control algorithm [55].

We propose a control algorithm which clearly identifies the ill-posed part and
splits the system into a pair of subsystems - a subsystem with measurable outputs
(surface - boundary temperature of the heated object) which is easy to control
by a feedback and a subsequent subsystem which is driven by the preceding sub-
system and whose distributed state is inaccessible to direct measurement (inside
temperature of heated object). Control of this inside temperature is achieved not
by a feedback but by a maintaining of pre-calculated temperature time profile
at the boundary of the object. The calculation of this boundary temperature
time development is exactly the ill-posed part of the controller as was noted for
example in [20].

The method uses a predictive control system working with the measurable
output of the thermal system and tracking a specified, optimally pre-calculated
reference signal for boundary control of the system in order to obtain a required
spatial temperature profile in the heated object at a selected time instants t,. For
a given spatial temperature profile, the reference signal for the system boundary
control is obtained by inverting a distributed parameter model, which describes
the dynamics of the unmeasurable temperature distribution in the second subsys-
tem of the given thermal system. In the method the inverse problem is converted
to some reqularization problem and is solved by a stepwise technique. This tech-

nique seems to be suitable for on-line control of thermal systems under a condition
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of stochastic disturbances acting on the controlled systems. The dynamics of the
first subsystem is modelled by continuous-time convolutional integrals with finite-
support kernels. The input and output signals of the subsystem are considered to
be polynomial splines. The B-splines are taken as base functions of these splines.
The control synthesis is based on minimization of an integral continuous-time
quadratic loss function, after the spline approximation is transformed to a sim-
ple matrix quadratic form. To minimize this form a quadratic programming is
employed. The allowed control input signal is then defined by a set of suitably
selected linear equality and inequality constraints which act on the vector of the
polynomial coefficients of this signal.

In the following parts of this section we briefly mention the step-wise method,
inversion task and the overall algorithm. At the end, the experimental results
justifying the method are described. We conclude with some notes leading to the
next section which concerns a new close loop predictive scheme for the thermal

system.

3.3.1 Step-wise method of optimal boundary control

The laboratory device on which the method is verified consists in a boundary
heated metal bar which is cooled by heat tranfer to the surrounding air (for more
detailed description of the device see Figure 3.1 in section 3).

Then the behaviour of the unmeasured temperature field of the metal bar
Y (z,t) at the time instant ¢ and the position x of the bar is described by the
parabolic partial differential equation (3.1).

The heating of the bar is controlled through the boundary temperature u®(t) =
Y (0,¢) and the task is to find such function u*(¢) - boundary heating of the bar
- which ensures the attainment of the required spatial distribution of the bar
temperature Y (z,t) at a specified time instant ¢,. In this situation we can use

the integral representation (see section 3.2.1) which have the following form:

ty
Y(x,ty) = a? 2 G(z, &ty — 7T) |e=0 u"(7) dT +
to 06
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[ Gt~ 10) Yole) de 3.3
0

where Yy (z) = Y (z, 1) is given initial condition and G is the Green’s function.
The second part of equation (3.32) is known for known initial conditions. Let us

denote it as Y.(x,t,) and define the modified state Y;,(z,t,) as:

Yo(z,t,) =Y (,t,) — Ye(z, t,)

then

Yo (z,t,) = (3.33)

te 9
= a2 s a—gG(m,g, ty — T) |e=o w*(7)d7

This equation can be written in an operator form:
Y, = Au” Y,eS ,ueDCZ (3.34)

where A is the linear integral operator of relation (3.33), Z and S are Hilbert
spaces, D is a closed convex set, build by a priori limitations of the control
task. The relation (3.34) represents an Fredholm integral equation of the first
type and the solution of this equation fulfils the definition of an ill-posed problem
in the Hadamard’s sense. Therefore it is necessary to use some regularization
method, which will give satisfactory results. We employ the method of Tikhonov
[50], where the task of solving the equation (3.34) is replaced by the task of the

minimization of the following smoothing functional M,[y]:

Moly] =1l Any — Yous |I* +a || u” ||

where o > 0 is the regularization parameter.
Ay is an operator which approximates the operator A with defined error A,

that means
| A=Al < A (3.35)
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Y6 is the left hand side of (3.34), which is specified by the error 4, i.e.
| Yoo = Yims || < 0, (3.36)

The so-called generalized residuum is defined as :

pla) =|| Ay ul — Yo |I” —

="+ h [l ug 1) = (1 (Yus, An))? (3.37)

where

p (Yo, Ap) = inf || Apy — Yons ||
yey

is the degree of inconsistency.
The regularization parameter o of the smoothing functional is chosen by gen-

eralized principle of residuum, which is the following. If the condition:
| Yins (17> 0% + (11(Yins, An))? (3.38)

is not fulfilled,the approximate solution of the equation (3.34) is y = 0. If the
condition (3.38) is fulfilled, then the generalized residuum (3.37) has a positive
root o and the solution of equation (3.34) is a minimum u¥. of the smoothing
functional (3.35).

In [50] various properties of the generalized residuum has been proved. An
important fact for our algorithm is that in the presence of constraints the gener-
alized residuum is not a differentiable function of o and therefore the numerical
method used can only employ the values of function p(c) in order to localize
the root. However, the generalized residuum as a function of « is continuous,
monotonic and therefore has only one zero.

As regards to the accuracy of the proposed procedure, the Tikhonov theory
do not specify the precision to which a computation of the solution of equation
p(a) = 0 has to be carried out. However, in an experimental situation with noisy

data few decadic places were enough.
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3.3.2 Overall algorithm

In the preceding section the inverse task for the distributed model (3.1) was trans-
formed to the problem of solving the operator equation (3.34) for a given left hand
side. The solution u¥. = u,(t) of this equation forms the reference signal for the
optimal boundary control of the heated bar. The iterative regularization method
used for solving equation (3.34) is valid only for in advance given and constant
integral bounds %y, ¢,. This fact is necessary to take into account in the designing
of the generator of the reference signal u,(t) for on-line boundary control of the
thermal system. One way is to base the generator structure on stepwise triggering
the inversion task in equidistantly located discrete time instants ¢,. The distance
between the time instants determines the bounds of integrals in the numerical
solution of the equation (3.34) and in next explanation we will call this distance
the inversion horizon H;. From a practical point of view the length of the horizon

H; depends on several factors, namely,
e Technological needs for the heating process and the goal of the heating.
e Dynamical properties of the thermal system.
e Time behaviour of disturbances acting on the measurable system output.

In the process of the stepwise triggering of the inversion task with the time period
H; it is necessary to know at the particular starting time instant a true profile
of the unmeasurable temperature distribution Y (z,t) in the heated bar. The
true profile Y (z,t), which is really reached at the end of a preceding period,
creates the initial condition for the inversion in a subsequent period. Because
the temperature profile Y (x, t) is not measured, its true time development can be
only simulated using a responce of the model (3.1) due to the actually measured
system output signal % (t). For numerical calculation of the true response Y (z, t),
it is advantageous to utilize again the operator form (3.34) of the model. The
length of the time interval during which the integration in (3.34) with the real
signal u"(t) is performed we will call a simulation horizon Hs. For numerical

reasons it is suitable to choose Hy = H;/ni, where ni is a given positive integer.
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The starting point for the numerical solution of the simulation and the in-
version tasks consists in a suitable discretization of the basic relation (3.34) and
its transformation to a matrix form. The resulting matrix form oriented to the
simulation we will call a simulation model and the matrix form aimed at the
inversion we will call an inversion model. Based on the above models, the gener-
ator of the reference signal u,(t) is constructed. The required profiles Y, (z) enter
the generator with time period H; and the real measured signal u®(t) enters the

generator with period H;,.

3.3.3 Experimental verification

The configuration of an experimental device on which the method has been veri-
fied is shown in Figure 3.1. It consists of a copper metal bar which is heated at
one boundary and insulated at the other one. There are 8 thermocouples installed
on the bar which can be used for the verification of the proposed method.

Equation (3.1) models the experimental device with a reasonable accuracy if
the thermal diffusivity and heat transfer coeficients are properly identified.

Let us recall shortly from the section 3.1. We have used an off-line identifi-
cation method, based on the fact that after reaching steady state of the system
on some higher temperature we can switch the boundary condition at the heater
side to the insulated-end Neumann type condition by simply switching off the
heater. The system will relatively soon reach a state when the 2V (z,t) < ¢
for all 0 < z < L i.e. the temperature along the bar is nearly constant. €; is
an apriori chosen small constant. In our case the system has been heated to the
steady state with boundary temperature 260 degrees Celsius. Subsequently, after
switching off the heater the system reached the state where ¢; was under the level
of the noise at about 60 degrees. From this moment the behaviour of the system
is described by the simple first order differential equation %Y + bY = 0. This
equation is solved analytically thus providing a possibility for simple identifica-
tion of the heat transfer coefficient. Once we know the heat transfer coefficient
it is easy to compute the thermal diffusivity coefficient by driving the system

to steady state and solving the boundary problem for the first order ordinary
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differential equation. The resulting values are b = 0.002, a = 0.0906.

The experimental results are presented on the two sets of experiments. Both
sets have the same structure but use the different values of the parameters a, b
to illustrate the sensitivity of the proposed method to those parameter values.

Each set of the experiments is organized as follows: the experiment starts in
a certain state of a system, then we submit subsequently in a step-wise manner 5
different states which the system must reach in an apriori given time horizon. At
the end of each time interval we compare the prescribed goal state with the state
which the system has really reached and the internal simulation state which is
maintained as a starting state for further steps of the step-wise method, as was
described in detail in [40]. The actual measured state of the system is shown
in 15 points but only every second one is obtained by direct measurement. The
points between are interpolated by the use of splines.

The first set of experiments is given in Figures 3.24, 3.25 and the second in
Figures 3.26, 3.27. In both sets, Figure A shows the boundary temperature.
Figure B contains the heater controls and the remaining Figures t0-t5 show the

states at the subsequent time steps.

3.3.4 Notes

The experimental results support the developed step-wise method. However,
during the verification process we have also identified certain drawbacks which
are solved by the new method described in the next section.

Some difficulties can be overcomed by carefully choosing the spline represen-
tation base functions. Others are more inherent to the Green’s function approach
and could be overcomed only by choosing a different approach. For example, when
the equation is of a more complicated nature the explicit form of the Green’s
function could be not at hand. Also, during the forward problem solving the
simulation with the integral kernels is rather computationaly complex. Another
problem is the reduced flexibility of the method due to the fixed time integration
horizon, which asks for recalculation of the matrices each time the basic time step

t, has to be changed.
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One promising direction is the use of the well known numericaly stable dif-
ference schemes, or finite elements, for the forward modelling. However, in this
case the inverse problem formulation as well as the numerical behaviour are more
complex as is described in the next section.

There is also another interesting aspect of the experiments mentioned above
which is related to the identification of the system parameters, namely, that the
proposed method seems to be more robust with respect to the parameters a,b
as is the corresponding forward simulation alone. We suggest that this increased
robustness is due to the ill-posed problem solution embedded within the method.
However, this aspect would need more experiments to carry out as well as further
theoretical analysis to decide whether it could provide a promising direction of

further research.
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Figure 3.24: The set of experiments representing a continuous run of the system
through goal states in step-wise way for the parameter values a = 0.00906, b = 0.002.
In Figure A the full line shows the predicted temperature computed by solving the
ill-posed inverse problem, the dashed line is the experimental temperature. In Figure
B there is a control signal - the input to the heater. In the Figures t0-t5 which are
in Figure 3.25 there is a comparison of the prescribed goal state (full line) with the
actually measured state (the stars) and the internal simulation state (dashed line)
which is maintained as a starting state for further steps.
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Figure 3.25: In the Figures t0-t5 there is a comparison of the prescribed goal state
(full line) with the actually measured state (the stars) and the internal simulation

state (dashed line) which is maintained as a starting state for further steps. For more
details see Figure 3.24 first.
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Figure 3.26: The set of experiments representing a continuous run of the system
through goal states in step-wise way for the parameter values ¢ = 0.0135,b =
0.00485. In Figure A the full line shows the predicted temperature computed by
solving the ill-posed inverse problem, the dashed line is the experimental tempera-
ture. In Figure B there is a control signal - the input to the heater. In the Figures
t0-t5 which are in Figure 3.27 there is a comparison of prescribed goal state (full
line) with the actually measured state (the stars) and the internal simulation state
(dashed line) which is maintained as a starting state for further steps.
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Figure 3.27: In the Figures t0-t5 there is a comparison of the prescribed goal state
(full line) with the actually measured state (the stars) and the internal simulation

state (dashed line) which is maintained as a starting state for further steps. For more
details see Figure 3.24 first.
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3.4 Regularization Based Predictive Control

In this section we describe a close-loop predictive control scheme for bound-
ary control of thermal system which we denote Regularization Based Predictive
Control (RBPC). The method incorporates the ill-posed problems solving the-
ory into the control law thus providing a concrete realization of conceptual ideas
mentioned in the introductory chapter (chapter 1) as well as in the introduction
to chapter 3.

The finite difference method is used as a basis for derivation of the predictor.
Because this method naturally includes nonlinearities we consider an augmented

version of the original model in the form:

;Y(x, t) — aax (aQ(Y)aaxY(x,t)> +bY (x,t) =0
Y (o 10) = o), Y(0,0) = uft), 2D g

0<z<L, t>ty, a#0
A h

2 b -

c.p
where all quantities have the same meaning as in the equation (3.1) except

= (3.39)

the thermal diffusivity coefficient a?(Y") which is now understood to be a function
of temperature.

We consider two basic sorts of applications for the RBPC algorithm. The
first one is a situation where the feedback information is available from inside of
the spatial domain. In this setting the boundary temperature is considered to
be the control and the distributed state of the system Y (z,t) is the output. A
development of such algorithm is a main subject of this section.

However, the above situation is usually not present in the industry. In many
industrial plants (like reheating furnaces which are our main concern here) only
the boundary temperature can be measured. In the latter case we must rely on a
simulation to provide the information about an internal state of the system along
the spatial domain. The structure of a control algorithm in this more complicated
setting is supposed to be similar as was in the previous section 3.3 and consists

of three basic parts:
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1. RBPC algorithm which in every time step provides a reference signal for

cascaded low dimensional predictive algorithm of a GPC class.

2. SISO (or low dimensional) GPC algorithm which controls the finite dimen-
sional heater subsystem and as a reference value for output uses boundary

temperature produced by RBPC.

3. Simulation model which based on the real measured temperature on the
surface of the system provides a feedback information about the internal

temperature distribution to RBPC algorithm.

The above mentioned structure has already proved (also experimentally) its
usefulness in the control algorithm described in the previous section. The dif-
ference is now in the following four factors (i) the control from the boundary of
the system to its internal state is now made in a recursive close-loop predictive
way compared with the open-loop method used in the previous section (ii) the
simulation and control is based on a completely different formalism i.e. on finite
difference schemes (iii) there is a new control law which incorporates the theory
of ill-posed problems inversion and (iv) the nonlinearity caused by the tempera-
ture dependence of the thermal diffusivity coefficient is incorporated within the
algorithm.

As far as other blocks mentioned in the above ”"meta-algorithm” are well
developed (see previous sections, as well as [13], [40, 41]) in the rest of this

section we focus on development and simulation tests of the RBPC algorithm.

3.4.1 Predictor

Having defined the model of the process as is (3.39) we can recall the finite
difference scheme from section 3.2.2 with a new notation which will be used
consistently during this section (see Table 3.28). The definition of matrices P
and C remains the same therefore it is not repeated in figure 3.28. However, we
repeat the definition of vector f) to stress that in the case of boundary control
only the first element of this vector is not zero. This fact allows a derivation of a

computationally efficient predictor.
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ADYO = ADYO=) L g0 4 g1
AY = C +wP®, (3.40)
AY =C—wpty,

h
fi=p(zo + 2 t)u(t) (3.41)
k=2 ..n, f]i:()

vl = wf®

Figure 3.28: A new notation for the finite difference scheme.

We start this section with deriving what we call a local predictor until it is
summarized in Theorem 7 below. It is a predictive scheme which predicts the
state k-steps ahead for the whole spatial domain. Then, at the end of the section,
the predictor is defined as a set of local predictors with an option not to consider
all spatial points of certain local predictors.

In the following, [ denotes a discrete time starting from 0. Let £ is a fixed
number £ > [. The matrices considered have dimension n x n or n x k (depending
on a context) where n is the discretization density in space of the finite differ-
ence scheme and k£ determines the number of steps ahead to which the predictor
computes the future state.

The basic equation can be written in the new notation as
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v = B0y 4 MO 4y, (3.42)

Then the state y'™* can be expressed by a recursive application of equa-
tion (3.42) as

yl—|—k: — E(l+k) o E(l+2)E(l+l)yl +
+EER B AO 4y 4
+E(l+k) N o) %A(lﬂ) (Vl+1 + Vl+2) +
+...+
+EER) %A(l+k—1)(vl+k—2 + Vl—i—k—l) +
+ A +R) (vz+k71 +Vl+k)
Now, we observe that the matrix T®) = E¢R  EW can be computed by

the following matrix recursion:

Tki+1) — RU+E+1) (kD) (E(l+1))—1
Tk — k)  RQRO.
Moreover, because the vectors v¢ have only the first coordinate nonzero, the

terms E(HH R+ A0) (vi + v**1) can be interpreted as the first columns of

the respective matrices (E¢H%) . E(+2) x

AD),; times a scalar vi + vit! (X,; denotes the i-th column of matrix X).

Employing the idea above and intending to obtain an incremental form of the

predictor it can be written:

ylth = Dyl

+(EEH EEHD AD) 2vi + AVE) +

+(EER L EHD A 2vE 4 2AVE + AVETY) +
+...+

+( %A(Hk))d(?v‘ll + 2AvH 4L 4 2AvITRTZ 4 Ay
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where Av! = v+l — i,

The above columns can be collected in the matrix F** defined as

F(Ic,l) — (E(H-k) N .E(l+2) i&(l)).l | o | ( %(H—k)).l).

Then, two new vectors can be defined as

"'k’l l INT
u, (vla'-'avl)
N —
k times

AdR = (AvY, .. AvEFEYT

Using the new notation the vector on the right hand side of the matrix FD

can be expressed as

vl + Av!

l I+1
2Vll + 2AVl + AV1+ — 2ﬁ/;,l + BAGH!

2vi + 2AvE + L 4+ 2AvETETZ L AyERTL

where the matrix B is a lower-triangular matrix with one’s on the diagonal

and two’s under the diagonal

1 0 0 0
2

B= (3.43)
2 1 0
2 2 2

The predicted state can be written using the above derivation as

yH—lc — T(k,l)yl + F(k,l) (Zﬁl{’l + BAﬁk’l)
it = Tyl 4 gD Eh | FRDBAGH
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The formula contains three parts, the first represents the evolution of the
initial condition with a zero boundary condition, the second one is the impact
of the current applied control and the last term is a contribution from future
controls. Therefore, the future control part has been isolated from the rest of the
evolution operator.

There is also a nice recursive formula for the matrix F®*.

Following the
above derivation it can be seen that proceeding from the state y' to the state y'*!
we must (roughly said) multiply by matrix E*+Y) and add a term containing
the new boundary condition. Because only the first columns of the respective
matrices are present in matrix F* a straightforward examination shows that

the following recursion is valid:

Fi+1) S,l(E(l"'kH)F(k’l), %A(.l;rkﬂ))

where S_(X, z) is a shift operator which shifts the columns of matrix X to
the left, in a way that X,; is forgotten, the second column is moved to the first
position, the third to the second and so on. The last column is set to be equal to

vector z.

S_l(X, Z) = (X.Q, X.g, e ,X.k, Z)

We can summarize the information obtained so far about the predictor in the

following theorem.

Theorem 7 (RBPC Local Predictor) Let a finite difference scheme with n
discretization steps is given and let | denotes the discrete time starting at | = 0.

Then a k-step ahead incremental predictor P*' assigned to this scheme equals
yhHE = phl(y! Aut) = TEDyE 4 20p FED b 4 upy FEVBAUR.

TEY and FED gre n x n resp. n x k matrices defined by the following matriz

recurences

Tkt = Bk (gD -1 (3.44)
Tk — Rk  RAERED
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FRiD) = g_ (BCHHDE®RD ATy (3.45)
FEO — (BE® E® AD), | ... | (A®),)

where S_1 s a shift operator defined as
Sfl(X, Z) = (X.Q, X.g, ey X.k, Z).

Vectors u;®!, Au®' and matriz B are defined as

w = (. u)T ub = u(t)
AuPt = (A, .. AR AU = u(ty) — utipir)
1 0 0 O
2 1 ... 0
B =
2 1 0
2 2 2

W= 513,P0 = p(zo + h/2,t) and 7, h are the discretization steps in time resp. in

space.

Some of the complexities in the above derivation of the predictor are related
to the nonlinearity in the model (3.39). In the case when the thermal diffusivity
coefficient and coefficient b are constant the matrices T*Y and F* would be
constant which would lead also to a faster algorithm.

The local predictor from the above theorem can be used for constructing the
generalized version of a predictor where more predictions to the various depth
in time and space are made. This is necessary to gain a control over the spatial
domain behavior of the system. Before we proceed defining the final version of
the predictor there are two notes to the above theorem.

The pre-multiplication with wpy is important because it allows to use more
local predictors with different space grids located at a different future times. The
unknown variable of control increments is made independent of the particular

grid density of a local predictor.
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Another aspect of the theorem is that it serves well in organizing the structure
of the predictor but it can not be directly used as an algorithm. The problem
is in the matrix recursion (3.44). The characteristic high stability features of
Crank-Nicolson scheme stems from the fact that the transition matrix E®) has
all eigenvalues less than 1. That means that the matrix (E¢*Y)~! which is
on the right hand side of the recursion (3.44) has all eigenvalues larger than 1
which makes the matrix recursion totally unstable. However, we are not in fact
interested in the recursion itself but in the vector T(k’l)yl which can be computed

by the simplified scheme

Ag)y(z) _ Ag)y(H)

(k’l)yl corresponds exactly to the solution of the system

because the vector T
with zero boundary conditions. Moreover this is in fact also computationally
much more efficient as far as both matrices in the recursion are dense to the
contrary to standard Crank-Nicolson step which involves only tridiagonal matri-
ces. Therefore the computational complexity of computing the matrix recurrence
would be O(n?®) whereas the complexity of computing the vector TEDy by k
simplified steps as above is only O(kn).

On the other hand the second recurrence (3.45) is perfectly stable as far as it
involves only the stable matrix E®.

In general, the predictor is constructed taking a set of local predictors
fpk,l(yl, Auk’l)

all starting from the same state but having different time & of the prediction as
well as different discretization grid. Moreover from each predictor only a certain
subset of points can be chosen.

In more detail, suppose that we are at a time moment [ and the horizon of
the prediction kj, is given. Then the predictor is constructed as a linear map from
the space of control increments Au*' € R** to the space of discretized solutions

given in a system of spatial points which reads as
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wy
k1
Wy,
k1
wdl
k1 al ki
g1,d1 Wy
.. Au' ..
kil — k;
9i>d; Tt - wy;
... Auykm
Kol i
gmydm wdi
w'f’"
km
Wy,
wsm

where the upper indexes have the same meaning as in Theorem 7. The bottom
left index means the number of equidistant discretization intervals and the bottom
right denotes the depth of the respective local predictor. On the right hand size
we have reference signal at the corresponding time moments and space points.

It is a collection of local predictors according to the Theorem 7 but only
certain number of spatial points (depth) is considered. The above construction
is illustrated in Figure 3.29 where the points considered for each predictor are
emphasized by a larger bullet.

In fact the time positions of the respective local predictors can be made also
non-equidistant and we can choose only internal points but for the simplicity (and
computational complexity) reasons in the following we restrict the consideration

to the equidistant time grid and to the depth parametrization of each predictor.
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Figure 3.29: A predictor structure example. The predictor is constructed from 3 local
predictors. Note also that the time horizon can go beyond the last local predictor.
See the text for explanation.
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(There might be some reasons why to consider non-equidistant times for the
respective local predictors, but this will need further research.)

For the schemes as in Figure 3.29 we use a notation (h.(t.g.d)....(t.g.d)) where
h is an overall prediction horizon, each triple represents a local predictor, the first
element t in each triple is a prediction horizon of the local predictor, g is a number
of discretization intervals for the local predictor and d is the local predictor depth.
For example the predictor in Figure 3.29 is denoted by (8.(2.8.4).(4.6.3).(6.4.4)).

The number of possibilities how to design a predictor is immense, however,
we have observed some pattern for the heat equation. As far as the system we
consider is exponentially smoothing the signal is strongly damped also in the
spatial direction. We can draw the contour plots for unit step response of the
system (3.39). They are in Figure 3.30. The first contour (labeled with an
arrow) is of interest because it shows the boundary between the area where the
signal is non-zero and the rest. We adapt the basic predictor structure to this
pattern and one such predictor with a structure (15.(1.8.1).(3.8.2).(7.8.4).(15.8.8))
is schematically drawn in the figure. We have experimented with many different
schemes as will be to some extend described in the next sections but the scheme
in Figure 3.30 seems to have the best performance so far. The predictor of this

scheme can be written as

1,1 7

Pg1 wq
3, 7

7)8,2 Wy
1 ..

Pgy wj

15,1 7
Pgg wy

Another aspect in designing the predictor is the fact that the space points

must be traded against the controls if we want to avoid rank deficiency of re-
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Figure 3.30: The contours for a unit response of the heat equation. x-axis represents
the spatial coordinate, y-axis the time. The point (0, 0) is in lower left corner of the
picture. The contours drawn in the figure represent the curves with a constant value
of the unit response. The first contour which separates a domain with a non-zero
value is labeled by an arrow. The domain with non-zero values of the unit response
lies to the left of this contour. The predictor spatial points are represented with
the bullets. The predictor in this example consists of four local predictors all having
the same dicretization step. Only the active depth of each local predictor is drawn.
The depth of the predictors as well as their position in the time has exponentially
decreasing density.

sulting matrices (non-controlability). Therefore not all control increments have

a corresponding spatial point at the given time.

3.4.2 Regularized solutions

In order to formulate a control law for RBPC we must recall some notions and
results from the theory of ill-posed problems solving in a more precise way. We
have mentioned them already in an informal way in section 2.3.

We follow [50, 51] in defining the basic notions.

For the purpose of this short section we denote by Z, U Hilbert spaces, D is

a closed convex set of constraints with 0 € D and operator A maps from Z to U.

107



The aim of regularization is to find a solution of the operator equation
Az =u

However, as far as in practice we usually do not have accurate form of the
operator at disposal, it is supposed that there is an approximation of A denoted
by Ap, || An— A ||< h as well as an approximation of the right hand side denoted
by us, || us —u ||< 6. The perturbed equation

Apz = ug

can even have no solutions, however in the setting we use here there is an as-
sumption that the unperturbed equation Az = u has a unique solution.

This fits very well to our case because the system we are investigating is
controllable that means there is always a boundary condition u(t) which can
drive the system to the desired end-state in a finite time. However, the finite
dimensional approximation can well have no solution in some circumstances.

The possible non-uniqueness of the original equation can be handled easily by
defining the normal solution of the problem as a solution of the extremal problem
|| z ||?=inf || z ||* where z € {2 | 2 € D, Az = u}. Therefore we assume without
lost of generality that there is a unique solution to the original equation.

As was already mentioned in section 2.3 instead of directly solving the equa-

tion Az = u the following smoothing functional is defined
M*(2) =[] Anz —us | +a || 2 |

. The functional is minimized for an appropriate value of the reqularization pa-
rameter o and the way how this parameter is found is the key to the regularization
method.

There is a basic fact which must be established in order to obtain a worthwhile
approach. We must know that if the perturbation (i.e. error) (h,d) goes to zero in
limit that there is a possibility to design the regularization parameter a(h, J) as a
function of the perturbation parameters so that the minimizer of the smoothing
functional goes to the solution of the original equation in limit.

A well established design [50] for the regularization parameter consists in the

following:
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Definition 8 (Generalized residuum) The real function pg s (o) =|| Apz® —
us || —(0+h || 2* ||)2—p?(us, Ap) is called generalized residuum where p?(us, Ap) =
infyep || Anz — us || is a degree of inconsistency and z* is a minimizer of the

smoothing functional M*(z).

The regularized solution is given by the algorithmic Principle of generalized

residuum.

Definition 9 (Principle of generalized residuum) If|| us ||>< 62+u%(us, Ap)
the reqularized solution z* is defined to be identically zero. Otherwise the reqular-

ized solution is given as z*" where o is the root of generalized residuum p(a*) = 0.

The correctness of the above definition (i.e. the usefulness of the algorithm)

is given by the theorem:

Theorem 10 (Tikhonov [50]) Let A, Ap,u,us are given as above and (h,d) —
0. Then the generalized solution z*" given by the Principle of generalized residuum
is convergent lims 50 2% = z to the unique solution of the operator equation

Az = u. In the case A is not injective the convergence to the normal solution is
established.

An important design aspect of particular regularization method which follows
the general theory mentioned above is the selection of norms (resp. scalar prod-
ucts) in the spaces Z,U. Because an inversion of the parabolic equation (3.39)
is severely ill-posed problem, we choose a strongly dumping norm in the space
of controls, namely the Sobolev W} norm given as f] 2%(7) + %2(7') dr. The
distance on the right hand side (deviation from the reference signal) is expressed
with Ls norm.

The last thing we need (at least in the basic setting) is that the generalized
residuum has reasonable features so that an efficient algorithm for searching of

its root can be established. Indeed:

Theorem 11 (Tikhonov [50]) The generalized residuum has the following fea-

tures:
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1. p(a) is monotonic and nondecreasing for a > 0.
2. limg 100 =|| us ||> =62 — p2(us, Ap).
3. lima%(H,O = —52.

4. If || us ||*> 6% + u*(us, Ar) there is a oot o* of the generalized residuum

which defines the reqularized solution z* in an unique way.

3.4.3 Control Law and Control Algorithm

Having prepared the necessary background we can state the control law for Reg-

ularization Based Predictive Control as:

Control Law 12 (Regularization Based Predictive Control) Let the sys-
tem is described by parabolic heat equation as in (3.39). A is an evolution operator
given by the equation (3.39) and u(t) is a boundary control signal. Let the per-
turbed operator A is given by the predictor P! = (73511”51, e ,P;j;éi, e, ;“::”ém)
consisting in a set of local predictors as defined in section 3.4.1. Then control
s gien as the first n < ky, elements of the regularized solution of an operator
equation Au = w over a finite discretization horizon k, where w is a reference

stgnal known over the prediction horizon.

The practical interpretation of the perturbation parameters (h,J) deserves
some discussion at this point. The parameter h is clearly interpreted as a dis-
cretization error with which the discrete version of the predictor approximates
the evolution operator given by (3.39). In different words, it is the discretization
error of the finite difference Crank-Nicolson method. This equals to O(7? + s?)
where 7, s are discretization steps in time resp. in space. In practice the constant
in the O(7% + s?) can be easily established by few experiments.

The parameter § defines in fact a neighborhood around the right hand side of
the governing equation. Concerning this, it is well reasonable to set its value to
the standard deviation of data noise.

On the other hand, it is usually sufficient to use a very conservative estimates

of h,d which can be easily obtained and then decrease their values. The reason
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is that the Tikhonov regularization method trades smoothness against the right
hand side fit. Therefore we can by few experiments decrease the values of the
both parameters until the solution is getting to lose the desired smoothness.
Now the control algorithm defined by the above control law is refined in suc-
cessive steps until we obtain computationally feasible solution. Here is the first

version:

Control Algorithm 13 (Regularization Based Predictive Control) Applying

the Control law 12 we have the following control algorithm.

1. (PREDICTION) Construct the predictor from the local predictors as described

mn section 3.4.1.
2. (INVERSION) Find the regularized solution of the equation

A(Au) =w

3. (CoNTROL) Apply the first n < ky, controls to the plant.
4. (RECEDING HORIZON) [ =1+n

5. (CLOSE LOOP) Repeat from the Point 1.

Because the Point 1. of the above algorithm has been discussed in section 3.4.1
we focus now on the Point 2. i.e. how to efficiently find the regularized solution.
To simplify the writing of formulas we denote Au as ¢ and we drop the su-
perscript on the predictor P. To find a regularized solution means first of all
to be able to minimize the smoothing functional M“(q) as was described in the

previous section. The Euler (normal) equation in this case reads
A*Aq + ag = A*w.

Then the equation must be discretized.
The same representation can be obtained by taking the discrete version of

smoothing functional and finding the normal equation. Taking into the account
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the definition of the Ly and Wy (the discrete form of W, can be obtained by an
approximation of the integral [ 22(7) + Z—jZ(T) dr by Y g2 + Yk, limama)?)

T

we obtain the discrete version of the normal equation which reads as
PTPg + aGq = PTw.

The tridiagonal matrix G has a form

1+5 -5 0
% 1+5% ..
G= (3.46)
I+ -
-5 1+ 5

Now we follow [50] in Choleski decomposition of G to G = H' H. This gives
P'Pg+ oaH "Hg = PTw.
Multiplying by H™! we obtain
(PH Y)"PH !(Hq) + a(Hq) = (PH ) w.

Introducing a change of variables y = Hgq we have the following basic form of the
equation

JTJy + oy =J"w

where J = PH™!. Now in [50] a Householder transform is used to produce a
tridiagonal matrices. We proceed differently; the matrix J is decomposed using
singular value decomposition (SVD) to the form J = LDR where L resp. R are
orthogonal transforms (R~! = R”) and D is a diagonal matrix of singular values
(in fact the eigenvalues of VITJ).

It might be objected that SVD decomposition introduces an iteration process
into the control which can be a cause of algorithm failure in the case if the process
is not convergent. This might be true in some situations, then we have to rely

on Householder transform and tridiagonal matrices. However, the computational
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simplicity as well as an elegance achieved with SVD is very appealing, moreover
we did not found any instance during the simulations where the SVD algorithm
would fail (even if the ill-conditioning of the matrices was of order 10°-10'),
therefore we suggest that those situations can be also excluded theoretically so
that we can fully rely on SVD.

To continue the derivation we can write
R’D"DRy + R”(aRy) = R"D L w.
Multiplying with R from left and introducing a new variables Ry = x we obtain
(D'D + ol)z = DL w.
Now the solution can be explicitly written as
T
T = %_FQILTU}. (3.47)

Let us denote by d, the dimension of reference signal and by d. the dimension
of control increments. A short examination of the formula above shows some
aspects of the solution which are now apparent. As far as LT is always a regular

matrix (in fact a rotator) we see that the reference signal is rotated and multiplied
T

by the matrix DD which has on the; diagonal the elements Dria for 1 <
min(d,,d.). The rest of the matrix TDi is zero thus giving an account of
D D+al

the effects given by the conditions d, < d. resp. d, > d.. The former case means
introducing redundancy in control whereas the latter case means introducing a
rank deficiency (uncontrollability). This leads to the conclusion that the default
setting should have the same dimension of controls as of the reference signal.

It might be also interesting to consider redundant control as far as the trans-
formation back from the above canonic representation is made firstly by R” which
is a rotator and then by smoothing matrix H=!. This could contain interesting
geometrical moment that rotation from the subspace to the full dimension made
by the matrix RT can make the vector shorter. Unfortunately, we did not ob-
serve the rotation of this sort. The investigation of reasons we postpone to future

research.
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Figure 3.31: The graph of the function ;% for three values of «.

The regularization itself is now achieved by the function

x 1

fz,0) = =

?+a T+

which acts on the diagonal of the matrix D. It is also worthwhile to see the graph
of this function (in Figure 3.31) which is in fact a bounded approximation of the
function ch

The next step is the computation of the generalized residuum because « is
supposed to be its root. It would be advantageous if we would not need to go back
to the original coordinates while computing the function pg, ) () =|| P¢*—w; ||?
—(6+h || ¢* ||)*—p*(ws, P). Indeed, it is possible to use the system in the canonic

form. To see this, we write
| Iy — ws ||=|| PH Hu — w [|=|| Pu —w | .
On the other hand
| 3y ~w; [|=|| LDRy*~w ||=|| LDe—~LL"w ||=|| L(De—L"w) ||=|| De~L"w |
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because L is an isometric operator (rotator).
But the solution is expressed explicitly in the canonic coordinates, therefore

the final expression for residuum reads

o T

Pg® — ws ||=|| =L
1P —ws 1=l prp o

w || .

The degree of inconsistency p?(ws, P) is not computed at all. A short inspec-
tion of the formula (3.47) for the solution of the normal equation as well as the
formula for residuum shows that the degree of inconsistency being nonzero can
be caused by two reasons. Either the rank deficiency occurs because there are
not enough controls from the beginning or the dimension of the control is larger
or equal than the dimension of reference signal but in this case the system itself
is not controllable. In all cases the rank deficiency means zeros on the diagonal of
matrix D therefore these elements of vector LYw are not present in the residuum
value. On the other hand they constitute exactly the value of the degree of in-
consistency p?(ws, P). Therefore instead computing residuum minus the degree
of inconsistency, a quantity which we call consistent residuum is computed. The
computation of consistent residuum is simple because it means only to add the
values of residuum where the diagonal of D is nonzero.

Finally, the quantity (6 + A || ¢® ||) is computed according to the W, approx-

imation mentioned above. Here note that
lqll=llHy ||=|| H Rz |[<|[H ||| RTz ||=[| H || || |

because matrix R” is an isometric operator. The matrix H~! is upper triangular
therefore its operator norm can be easily computed by computing the W} norm
of its last column.

Summarizing the above discussion we can see that for the solving of the normal
equations as well as for the evaluation of generalized residuum we need in fact only
the diagonal matrix D and the vector r = L' w. If D is provided as a vector which
is natural, then the algorithm which computes the root of generalized residuum,
as well as the final solution, can work using only these two vectors (and scalars
like error parameters (h, d), discretization steps for discrete norm computing etc)

which leads to very efficient implementation.
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Before we formulate the final version of the RBPC control algorithm there are
two notes. Firstly, an examination of the above procedure for the computation
of generalized residuum shows that it is in fact a function with highly specific
structure. This fact suggests a possibility to have a very specific (i.e. efficient)
method for finding the root of this function, even a possibility of more-less explicit
solution is not completely excluded.

Secondly, according to the analysis in [50] the generalized residuum is under
certain circumstances (h = 0, no constraints) even continuously differentiable and
convex therefore a Newton method can be used for its solving. However, if h # 0
which is important condition in our case only the basic features mentioned in the
preceding section are valid. Therefore we must use equation solver which do not
use the derivative or convexity.

On the other hand the sequential character of the algorithm provides good
approximations for the future values of parameter o and the possibility to com-
pute the solution using only the two vectors as stated above makes the algorithm
very efficient therefore some loss of speed due to the less efficient equation solver
is not critical. In fact the more general equation solver provides a robustness
against a crash of the algorithm due to the divergence of a specialized method.

The final version of RBPC algorithm reads as

Control Algorithm 14 (Regularization Based Predictive Control) Applying

the Control law 12 we have the following control algorithm.

1. (PREDICTION) Construct the predictor from the local predictors as described
i section 3.4.1.
(a) Read (or compute) the reference signal.

(b) Compute the free response of the system according to Theorem 7 for

all local predictors.

(c) Form the predictor matriz by recursion (3.45) from Theorem 7 for each

local predictor.

(d) Compute the current control term.
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(e) Form the predictor matriz and the right hand side using the depth

information for local predictors.

2. (INVERSION) Find the regularized solution of the equation

A(Au) =w

(a) Compute SVD of the predictor matriz. Compute the matrices H™1, RY
and L.

b) Compute the vector r = LTw.
74

(c) Find a root of generalized residuum using the vectors d,r, where the

vector d contains the diagonal elements of D.

(d) Transform the solution back from canonic coordinates to control incre-

ments.
3. (CONTROL) Apply the first n < ky controls to the plant.
4. (RECEDING HORIZON) [ =1 +n

5. (CLOSE LOOP) Repeat from the Point 1.

3.4.4 Simulation Experiments and Extensions

To illustrate the functionality and basic features of the method developed in the
previous sections we provide results of simulations which show a boundary control
of the system described by the equation (3.39).

The control algorithm 14 is illustrated on a process with load disturbance
randomly changing the set point. The control goal is to reject the load disturbance
shown in Figure 3.32 where the set point is changed four times. The states of the
system corresponding to four set points have the boundary temperature 100, 50,
200 and 70 degrees Celsius as it is shown in the figure.

First of all, we investigate some basic predictor configurations according to

the predictor synthesis in section 3.4.1. To illustrate the quality of control the
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Figure 3.32: The load disturbance for simulation tests of RBPC algorithm.

discrete L, norm of set point against the discrete L, norm of system state is

shown. These plots are linked with plots of control signal corresponding to each

simulation.
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Four basic configurations are computed, namely:

e (32.(8.8.8).(16.8.8).(24.8.8).(32.8.8)) - this configuration considers the same

depth for each local predictor with equidistant positioning of local predictors

in time. The simulation results are in Figure 3.33.

e (32.(4.8.8).(8.8.8).(16.8.8).(32.8.8)) - the configuration considers the same

depth for each local predictor with exponential positioning of local predic-

tors in time. The simulation results are in Figure 3.34.

e (31.(1.16.1).(3.16.2).(7.16.4).(15.16.8).(31.16.16)) - the predictor structure
which concerns the exponential smoothing as is shown in Figure 3.30. For

simulation results see Figure 3.35.
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e (32.(32.32.32)) - the predictor structure concerning one local predictor at

the end of the prediction horizon. The simulation results are in Figure 3.36.

All four simulations are made for the same values of perturbation parameters
h =10.01,6 =0.1.

One important conclusion from the above simulations is that the algorithm
designer can choose between different responses considering different predictor
structures. The predictor structure developed in the previous sections seems to be
enough flexible to capture different needs with respect to the spatial distribution
of tracking error.

On the other hand the design of predictor from the point of view of optimal
placement of local predictors would need a further theoretical investigation. Ex-
perimentally, the configuration with the best overall performance is suggested in
Figure 3.35. This configuration has better overall performance compared with
the configurations in Figure 3.33 and in Figure 3.34.

The difference in behavior between the scheme (31.(1.16.1).(3.16.2).(7.16.4).
(15.16.8).(31.16.16)) and (32.(32.32.32)) deserves a note. The scheme in Fig-
ure 3.34 has a slightly better behavior of control (smoother controls) but as can
be observed on the simulation results there is also a considerable drawback of this
scheme. The control algorithm with this scheme has a feature that at the moment
when a set point change is seen in the future the algorithm immediately leaves
current set point. In the case of our concrete experimental data it means that
the system leaves the current set point about 300 seconds earlier as necessary.
Therefore, despite a slightly better controls of the scheme (32.(32.32.32)), we con-
sider the configuration (31.(1.16.1).(3.16.2).(7.16.4).(15.16.8).(31.16.16)) to have
the best overall performance. However, if the above mentioned feature is not im-
portant for the controlled process a designer can choose also the simpler scheme
(32.(32.32.32)).

We use the configuration (31.(1.16.1).(3.16.2).(7.16.4).(15.16.8).(31.16.16)) to
illustrate the behavior of regularization parameter « as well as to show the impact
of the smoothing parameters h, 9.

In Figure 3.37 the time development of the regularization parameter « is

shown for the same simulation as is in Figure 3.35. « shows a characteristic
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Figure 3.33:  The control algorithm simulation with predictor structure
(32.(8.8.8).(16.8.8).(24.8.8).(32.8.8)). The set point and the system state are ex-
pressed in discrete L, norm. x-axis represents time in seconds and the y-axis value of
Ly norm. The lower picture shows the controls during the simulation.
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Figure 3.34:  The control algorithm simulation with predictor structure
(32.(4.8.8).(8.8.8).(16.8.8).(32.8.8)). The set point and the system state are ex-
pressed in discrete L, norm. x-axis represents time in seconds and the y-axis value of
Ly norm. The lower picture shows the controls during the simulation.
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Figure 3.35:  The control algorithm simulation with predictor structure
(31.(1.16.1).(3.16.2).(7.16.4).(15.16.8).(31.16.16)). The values of perturbation pa-
rameters are h = 0.01,0 = 0.1. The set point and the system state are expressed in
discrete Ly norm. x-axis represents time in seconds and the y-axis value of Ly norm.
The lower picture shows the controls during the simulation.
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Figure 3.36:  The control algorithm simulation with predictor structure
(32.(32.32.32)). The set point and the system state are expressed in discrete Lo
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pattern where during the transient states when the system is enough excited the
value of « is very small which means that only a very small level of smoothing
(regularization) is needed. When the system reaches the stable state the value of «
grows significantly because the information coming from the right hand side of the
equation approaches zero and the inversion needs much higher stabilizing factor.
Finally, if there is no further disturbance the condition || us ||>< 8% + p?(us, Ap)
from the Principle of generalized residuum is fulfilled leading to the zero value of
control increments until a new load disturbance or noise will not provide enough
large (in Ly norm) right hand side for the inversion task.

In Figure 3.37, bottom picture, the number of generalized residuum evalua-
tions needed for computation of the parameter o is shown as a function of time
during the same simulation. As was mentioned in the previous section as far as
the searching for root of generalized residuum can be completely done in canonic
coordinates we prefer the simplest (but very robust) root searching method -
namely, dividing the interval to halves. If, for example, regula falsi or some
variation of Quasi-Newton method is used for the root searching of generalized
residuum less evaluations are typically needed but during the transient states
they can be divergent or too many iterations can occur.

In the previous section an interpretation was provided for the perturbation
parameters h,d. Decreasing the values of these parameters means in fact that
smaller fraction of residuum value is at the disposal for smoothing. This fact is
illustrated in Figure 3.38 where the same simulation as in Figure 3.35 is made
with values A = 0.001,6 = 0.01. On the other hand a better solution fit at the
end of the prediction horizon is provided as will be seen below.

The last aspect which we want to discuss is related to the fact that incorpo-
rating the regularization into the heard of predictive algorithm we have a strong
stabilizing factor. Therefore, we can try to stabilize the system in the neighbor-
hood of unstabilizable state.

Let us consider a constant value reference signal along the spatial domain as
an example for the system with a nonzero film coefficient b # 0. Denote this state
C. An inspection of the modal system of ordinary differential equations (A.12)

shows that there is no constant value of a boundary condition which can stabilize
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Figure 3.37: The time behavior of regularization parameter o during the simulation.
In the lower picture, the number of generalized residuum evaluations is shown for the
same simulation. For more details, see the text.
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Figure 3.38:  The control algorithm simulation with predictor structure
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126



the system at this state. However, we can experiment with RBPC algorithm to
find a stable periodic orbit containing the desired state in its interior. Interior
is meant in a special sense that it is a domain defined as a union of intervals
obtained taking a maximal and a minimal temperature at certain spatial point
during the whole orbit period of the system.

We suggest that such orbit must also contain a stable state of the system which
has the same minimal temperature at the point x = L as is the constant temper-
ature of the desired state C. In fact it intuitively follows from the maximality
principle for parabolic equation (see for example [52]).

If we take for example the state C with constant temperature 100 degrees,
then for the values a = 0.0095,b = 0.0020 we obtain that the above orbit must
also contain a stable state of the system with temperature 100 degrees at the
point x = L. Denote this state S. It has a temperature 230 degrees at the
boundary x = 0. Therefore we have that any stable orbit containing the state C
must also contain the state S.

The situation is illustrated in Figure 3.39 where the orbit computed by the
RBPC algorithm is shown in L, norm together with the corresponding controls.
The algorithm provides almost the best possible orbit as far as the minimal
temperature and maximal temperature on the boundary are few percent below
and above the best possible values according the considerations in the preceding
paragraph.

It must be stressed that to achieve the behavior in Figure 3.39 we must apply
all controls computed for the prediction horizon k,. That means in fact that
the advantage of the receding horizon is lost and the algorithm is “blind” to
disturbances during the whole prediction horizon time until the new sequence is
computed at the beginning of a new horizon (this gives also a period of the orbit).

It seems that a sensitivity to disturbances can be gained back by a different
approach based on the fact that a system on a stable orbit must see its past states
on the horizon. Therefore, we can speculate about an algorithm which (i) uses
a predictor to compute the sequence of controls which is then (ii) successively
applied but (iii) at each step the sequence itself is wverified by including past

states as reference signals in the future and recomputing the sequence. If there
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is no disturbance and the system is on the stable orbit we must obtain the same
sequence. Otherwise the current sequence is invalidated and a new sequence
computed. However, to put this note on a solid ground a further research would

be necessary.
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Chapter 4
Conclusions

Before we start the closing discussion, the contributions of the present work can

be summarized as follows.

e A new framework for model based predictive control is suggested which
incorporates regularization directly within the receding horizon algorithm.
It also gives a consistent interpretation of the weighting factor A used in

the quadratic criterion for GPC.

e A new model based predictive control algorithm (Regularization Based Pre-
dictive Control) for boundary control of distributed parameter systems is
proposed. The efficient implementation of the algorithm is developed and

the functionality of the algorithm is shown on computer simulations.

e An efficient method for computation of Green’s functions is developed to-
gether with an analysis of the simulation accuracy near the heated boundary
of the distributed parameter thermal system. This is our contribution to the
simulation and control of distributed parameter systems which uses Green’s

functions for the system description.
Besides these main contributions we have also discussed

e The regularization and overall aspects of the step-wise spline-based control

algorithm.
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e The off-line identification procedure for the thermal diffusivity and film

coefficients.

e The comparison of integral representation with Green’s functions and the

system description based on finite differences.

In the concluding discussion we would like to provide some notes focusing on
four aspects, namely, (i) what can be concluded with respect to the comparison
of integral representation and finite difference schemes, (ii) what the Regulariza-
tion Based Predictive Control (RBPC) can tell to the already established model
based predictive algorithms as for example GPC, (iii) what are possible direc-
tions of further research and (iv) how the preceding chapters are related to the

technological processes in a reheating furnace.

Integral representation model versus finite differences There are three

aspect which we want to consider in the comparison.

e A structural aspect, namely, to what extend the method provides a struc-

tural information and deeper insight into the problem.

e A computational aspect i.e. which of the methods is computationally more

expensive.

e How the method can handle nonlinearities caused by temperature depen-

dent thermal diffusivity and heat transfer coefficients.

Before we start this, it must be said that integral representation is heavily
building on the explicit knowledge of Green’s function or at least of the eigen-
functions of the related Sturm-Liuville problem. If these are not at the disposal
the method becomes to be numerically infeasible.

As with the first aspect, it seems that the structural information provided by
Green’s functions i.e. by solution of related Sturm-Liuville is much deeper then
using the finite differences.

For example given the discretization step in spatial domain we can estimate

accurately the highest frequency necessary to get reasonable approximation at
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the first point of spatial domain. Knowing the eigenfunction system (see the
appendix A) we know that the solution of the evolution operator has a zero value
at the boundary which means that the nearest maximum to zero is obtained at the
point where the highest frequency has a maximum. Moreover using the fact that
the system is exponentially smoothing (which also comes from this analysis) we
can compute the highest frequency which can be represented given a computer
precision. From this an appropriate discretization step can be estimated. In
fact, this is a different regularization method which consists in the estimation of
appropriate discretization step. This examination also suggests what would be
the appropriate scaling which would allow to introduce higher frequencies: the
space variable have to be scaled.

On the other hand, the integral representation is computationally slower which
is caused by the fact that the matrices involved are dense (for more details see
sections 3.2.1 and 3.2.3).

Also handling the nonlinearity seems to be more complicated using the integral
representation. It can be handled in the same way as with finite differences,
namely considering the values of the coefficients to be constant during some
control periods, however it boils down to recomputation or updating of Green’s
functions which is computationally expensive for the same reasons as mentioned

above i.e. because of dense matrices involved.

RBPC and MBPC - GPC There is one aspect which might be of interest also
with relation to the ”classical” well developed model based control approaches
like GPC. The thing is that RBPC framework gives clear interpretation of the
weighting factor A introduced for example in GPC to handle the ill-conditioning
of the matrices considered there. It can be objected that instead one design
parameter A we have now two, namely, A and §. It is true, but both of them
have clear interpretation and can be easily set. Then the value of smoothing
parameter comes via well established regularization theory. Moreover, its values
can be determined recursively so that the previous values can serve as a good

approximation of the current value.
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Further research As was already said in this work, we are still lacking two
aspects: the incorporation of noise model and the recursive identification of ther-
mal coefficients. We have done some steps to identify them off-line, however the
online recursive identification is one of the subjects of further interest. This ques-
tion is in fact in center of current research in the regularization theory where first
sequential algorithms start to emerge [56].

We have also seen that the measurements must be improved if we want to
have a more precise identification of thermal coefficients.

With respect to noise, this will definitively need further research to obtain a
full equipped predictive control for partial differential equations.

There are extensions of Tikhonov regularization which can handle a case when
there is no solution to the original equation and we want to keep this feature in
a stable way under perturbations. This can be a case of constraints in some
circumstances, however we leave this aspect for further investigation in future.

The basic strategy developed here is not constrained only to finite differences.
If the system would be higher dimensional and the boundary is more complicated
we can resort to finite elements with the same RBPC framework because the
following Crank-Nicolson like semi-discrete formulation is possible [27] (in a weak

formulation):

UZ_UZ_I u2+“2_1 _ ftn) + f(tn-1)
e A e B

where uy, is the solution and af(.,.) is the scalar product given by a(u,v) =

Jo(Vu.Vv + uv) dx. The difference then boils down to a different and more

complicated predictor.

Looking at the equation A.12 we can observe that the ordinary equations
given there are in fact independent. That means a possibility to think about a
sort of modal GPC control using the GPC control strategy in spectral domain.
If this would be possible the full force of GPC method together with a noise
model and recursive parameter estimation would be at the disposal for control of

distributed parameter systems.
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Reheating of rectangular slabs Finally, we return to the beginning of our
work with few words about a possibility to provide an industrially feasible solution
for control of reheating process.

The dimensionality reduction provided in RBPC allows to compute the main
iteration of the control algorithm on vectors instead of matrices which effectively
reduces the dimension by one. Therefore, the computational complexity does not
restrict applications of the method developed in the previous sections in industrial

conditions.
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Appendix A

1-D Heat Conduction

In the following appendix we derive a solution of the following heat conduction

and heat transfer equation:

at ’ axQ ) s —
Y(z,0) = Yo(x), Y(0,1) = y(t), % _0

0<z<L, t>ty, a#0
(A.1)

where: L is the length of the bar; a,b contain the heat conduction and the
heat transfer coefficients (for more details about the model see section 3).

The solution follows the well-known principles of separation of variables. How-
ever, it is good to have at hand a tailor-made derivation for the particular bound-
ary conditions as well as for the particular form of the basic equation.

We also suppose that the boundary and initial conditions are associated, i.e.

dY,(L)
o0x

Yo(0) = y(0), =0 (A.2)

It is well known (see for example [52]) that the above conditions can be relaxed

in the case of integral representation which we will derive later.
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First of all, we make a substitution to the equation (A.l) to simplify the
boundary conditions. Y (z,t) is substituted with

Y(z,t) = v(z,t) + u(z,t) (A.3)

where u(x,t) = y(t). Then the function v(z,t) conforms to the simplified bound-

ary conditions:

v(0,t) =Y (x,t) —u(z,t) = y(t) —y(t) =0
gZ(L, t) = ?;(L,t) Ou

The initial condition is
v(r,0) = vo(z) = Yo () — y(0). (A.5)

Substituting Y (z,¢) into the basic equation (A.1) we obtain

ov  Ou 0%v  0%u

E—FE—CLQ(aQ 82)—|—b(v—|—u)—0
ov 82
f(z,t)

This is an equation with a homogeneous boundary conditions but with a non-
zero right hand side. To solve it, applying the superposition principle, we can

proceed by solving first the homogeneous equation with a nonzero initial condition

ov 521)
ov
(.’E 0) - 1)0(33), U(Oat) = 07 or (L t) 0

and then solving the non-homogeneous equation with the zero initial condition

ov 0%
5 a2@ +bv = =y (t) — by(t) (A.8)
(£,0) =0, v(0,¢) =0 Z—Z(L B =0



The final solution of (A.6) is a superposition of the solutions of (A.7) and
(A.8). This is substituted to (A.3) to obtain Y (z,1).

Now, following the principle of separation of variables for equation (A.7), we
are looking for a nontrivial solution of (A.7) which can be written in the form
v(z,t) = X(z)T(1).

T'X —a?X"T +bXT =0
TI XII

2t 4=
7 a’ e + 0
TI GZXII
Zo4p= =)
T + X
Now to find the nontrivial solution of the Sturm-Liouville problem £ ))((" =-A
we can briefly derive: X" + 4X = 0, (char eq.) r2+ 5 =0, (Case 1.) A =
0, X" =0, X(z) =cix+cy, X(0) =c2=0, X'(L) =¢; =0, (Case 2.) A <
0, = -5, r = :i:ﬂ, X(z) = cle\/_g”—i-ch @‘”, X0) =c+c =
0 = ¢ = —¢, X'(L) = cl‘/_’\e\/c:AL - @%e AL - ‘/;_A(e\/;_AL—i—

A—) =0 =, c0=0 = ¢ =0, (Case3) A >0, rP+2%4 =0, r? =

L

®

AT = ii‘/x, X(z) = clsinﬂx—i—czcosﬁw X(0) = 02cos£0 =0 =

R

CQ:O,X'(L)—c\/_ \/_L_O \/_L_(Qk-l-l),k:(],l,...,\/_:
( )7Ta 2772042 e
2k42—£ ;A = %, @r(r) = sin @x281n(2k+1)ﬁ_

Similarly, for the eigenvalues of the above Sturm-Liouville problem, we can
solve the time dependent part: 7" + (b+ M\)T =0, 7+ (b+ X)) = 0, r =
—b— Mg, T(t) = Cke(_b_)‘k)t.

Let us create formaly a series for the general solution of (A.7):
o
VA
v(z,t) =Y cpel ™ sin Yoy
k=0 a
for the initial condition must hold

Ak
v(z,0) = vo(z chsm\/_

where ¢, = 2 JEvo(€)pr (&) dé are the Fourier coefficients for the development of

function vy ().
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Finally, substituting ¢, to the above sum for v(z, t)

2 & L
v@ ) =738 [ u(@er(©) g b ey (a) (A9)
L= /o
and exchanging the order of integration and sumation (for the correctness of the

steps see [52]) we obtain

v(z,t) = /OL {i i e(_b_’\’“)t@k(x)ﬁpk(f)} vo(§) d€ =

k=0

~ v

G(z,.ft
—/ (€, 1) vo(€) dE (A.10)

where G(z,&,t) is a Green’s function of the appropriate problem.

The second step is to solve equation (A.8). Now, the initial as well as the
boundary conditions are zero. The solution is supposed to be in the form of a
Fourier series

olot) = 3 ve(t)n(e) (A11)

k=0

where time ¢ is treated as a parameter. To find the coefficients vy () also the right

hand side of the equation is expressed in the form of a Fourier series
fz,t) = f(t) = —y'(t) — by(t) ka
with the Fourier coefficients as follows

=2 [" oyente) de = %f(t) [ o) de =

= 21/ + buit)) [W] e = G O + )

The Fourier series of the solution together with the series for the right hand side

are substituted into equation (A.8).

Z @k () {vg,(t) + ve () A + bug(t) — fr(t)} =
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The result is a system of ordinary differential equations for the coefficients vy(¢)

vy, (t) + v (t) (Ak +0) = fi(t)
U,’c (t) = —(/\k + b)vk (t) + fx (t) (A.l?)

Because the initial condition is zero, we obtain
Z vk (0 =0=v,(0)=0

The characteristic equations for the homogeneous version of the above system are
r+ A +b = 0. When we take to the account the right hand side and the zero

initial conditions then the solution of the system can be written as
t
v (t) = / e~ MFE=T) £ (1) dr (A.13)
0

The expression for the Fourier coefficients fi(t) is substituted to vg(¢) and the

coefficients vy (t) are substituted to the solution (A.11). We obtain in general

o

o) =3 [e oo {2 [ 1. 00n6) ac) ar b anto

k=0

vy = [ [ { > e e Joul6) | F(r,€) e ar

v(z, 1) // (,6,t — 7)f(7,€) dE dr
(A.14)

where G(z,€,t — 7) is the Green’s function in the same form as in the final
expression for the initial condition part of the solution (A.7).

What was derived above in general, can be specialized for the particular
case of the problem A.1. The special form of Fourier coefficients of f, fx(t) =
—ﬁ{y’(t) + by(t)} is substituted.

ooty = 3 { [t foo )+ by ) drfento

k=0

oz, / {% Z 2k Y e ()\k"‘b)(tT)(pk(x)}(—yl(T) —by(r)) dr

>

-~

G, (zat_T)
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v(z,t) = /Ot Gi(z,t — 17)(—y' (1) — by(7)) dr (A.15)

One possibility is to stop here and use the above form for system simulation.
Another possibility is to proceed with intergration by parts to get rid of the

derivative of y.
t
v(z, 1) :/ Gi(z,t — 7) (= (r) — by(r)) dr

/Gth—T dT—b/Gth—T)y( ) dr
oo t) = - {G1<x,o>y<t> — Gy 0) — [ -Gt — () dr -
—b /t Gi(xz,t — m)y(r)) dr
0
v(:v,t):—Gl(x,O) ( +G1 ) (O)
+/ { 1(z,t — 1) — bG1(x, t—T)}y(T))dT

~~

Gao(z,t—T)

v(z,t) = =G1(z,0)y(t) + G1(z, t)y(0) + /Ot Go(z,t — m)y(r)) dr

A straightforward derivation shows that

G t) = " S°(2k + e O () = a?CGe(a 1) = 2 Gl 1) oo

9
=0 %

Therefore the final expression for v(z,t) can be written as

v(x,t) = —G1(z,0)y(t) + G1(x, t)y(0) + a? /Ot Gog(x,t — T)y(T)) dr.
(A.16)

The solution Y (z, t) of the original problem (A.1) is obtained by the superposition
of (A.10), (A.16) and u(zx,t)

V() = y(6) = Ga(o, 0(0) + Gr,y(0) + [ Gaelat = rhy(r)) dr +
+ [ atn 0 16(0) —90) e
’ o (€)

(A.17)
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Taking into the account that [y G(x,&,t) dé = G1(z,t) we obtain
¢

Y (@,8) = y(#) - Gilw,0)y(t) + a® [ Goglo,t — r)y(r)) dr +
0

L
+ / Gz, €,1) Yo (€) de.
0
(A.18)

From the basic theory of Fourier series it follows that G (z,0) = 0 for z = 0 and
Gi(z,0) = 1 for 0 < # < §. This fact is also responsible for the correctness of
the above expression for the boundary =z = 0 of the spatial domain < 0, L >.
We have obtained two possibilities how to simulate the system response to
boundary condition based on the kernel G;(z,t) or on the kernel Gy (z,t). The

differences between them are discussed in the section 3.2.1.2.
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Appendix B

Example of RBPC C code

In this appendix we include an example of a driver which reads a predictor def-
inition from a file. Then the RBPC main control procedures together with a
regularization are listed.

The files have the following names:
e driver-control-gen.c - driver.
e control.c, control.h - RBPC main upper level procedures. procedures.

e 8.1-2-4-8.1-3-7-15 -example of a predictor definition.
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