Parallel Line: a Unified Solution

Ivo Povazan® Tom4s Hruz'

October 28, 2000

Abstract

This paper describes a new class of parallel algorithms for line interpolation
in raster space. A unifying approach to the line interpolation algorithms is
also presented. All algorithms are derived from one inequality.

1 Introduction

To create an algorithm approximating a line in raster space is simple. It turned out
not to be so simple to find an algorithm optimized with respect to data types and a
number of arithmetic operations. A widely used algorithm was proposed by Bresen-
ham [3] in 1965. Since then, further improvements have been published (See [4] and
references there). The number of operations for those algorithms mentioned above is
linear with respect to the number of points approximating a line. The recent trend
in research of sequential line interpolation algorithms consists of various attempts
how to reduce an overall number of operations. These algorithms determine more
than one point during an iteraion [7, 10]. Another possibility how to speed up the
algorithm is to preserve certain structure of raster space in a table [5].

The paradigm of parallel architectures have brought an attention to another as-
pect of line interpolation i.e. on the possibility to make the interpolation parallel. In
[13] the author breaks down a given line into smaller parts according to the number
of processing elements. The main problem here is to determine initial conditions for
all processors. Another approach is presented in [9] where a processing element is
assigned to each pixel in raster space. The Connection Machine library [1] imple-
ments an algorithm that assigns a processing element to every line segment, then
all line segments are rendered in parallel. The scan operation as is defined in [2] can
be also used for parallel line interpolation.

The line interpolation problem in raster space can be split into two parts. Firstly,
there is a problem how to determine quickly the integer coordinates of the points

*Ivo Povazan, Institute of Control Theory and Robotics, Slovak Academy of Sciences,
Dubravska cesta 9, 842 37 Bratislava, Slovak Republic, Phone: +442-7-3782985, e-mail:
utrrpova@savba.savba.cs

tTom4s Hriiz, Slovak Technical University, Faculty of Mechanical Engineering, Department of
Automatic Control and Measurement Namestie Slobody 17, 812 31 Bratislava, Slovak Republic,
Phone: +42-7-3594-571, 497193 e-mail: hruz@vm.stuba.sk Fax: +42-7-495315

approximating a given line segment. Secondly, contents of a video buffer must
be updated in these points. To achieve maximal speed up both parts should be
parallelized. However, in our contribution we deal explicitly with the first part of
the problem, but implicit consequences for the second part can be derived as well.

In figure 1 is a line segment and its raster space approximation. It is intuitively
clear that for the line in the first octant (the derivative is in the interval of < 0,1 >)
we obtain good approximation if on every vertical line of the mesh lies exactly
one point of the line approximation. Its y-coordinate is then determined by the
distance of the intersection and the nearest grid point. An accurate formulation
of the line segment approximation (or digitalization scheme) can be derived from
general principles (for references and also for the approximation with lattices see
[14]).

Intuitively one can say that the set M of grid points approximating a line should
have the following properties: starting and ending points have to be in M, cardinality
of M must be minimized as well as the distance from the line. On the other hand
M should satisfy some connectivity condition in a discrete sense.

We call raster space a set Z?* (all integer pairs) which is interpreted as embedded
in the Euclidian plane R?. Sometimes we call elements of raster space grid points.
The first octant is a set of integer pairs (z,y) defined as: {(z,y) € Z2 C R? |0 <y <
x}. As is usual, we suppose that the start-point and the end-point of a given line are
integral. Moreover, without loosing generality we can suppose that the start-point
S = (0,0) and the end-point F = (H, V) lie in the first octant. Otherwise, a well
known simple transformation [3] can be used which maps the line to the first octant.

The standard digitalization scheme which we employ here is sometimes called
mid-point digitalization scheme [6]. It leads to the above mentioned situation where
on each vertical line of the mesch we have exactly one point. The approximation of
a line by the mid-point digitalization scheme is a set of all integer pairs (x,y) which
fulfill the following inequality

1V 1
Ll <y+4-= 1
Y- < Fr<ytg (1)

where x satisfies the condition z € {0,1,2,....., H — 1, H}. Linearity implies also
that y € {0,1,2, ...,V —1,V}.

We can solve the inequality (1) by reformulating it to the form of a system of
H + 1 inequalities where z is running through the set {0,1,2,..... H — 1, H} of by
reformulating it to the form of a system of V' + 1 inequalities where y is running
through the set {0,1,2,.....V —1,V}.

A unified approach to the interpolation algorithms which we propose means that
all algorithms in the following sections are obtained by a certain reformulation of
the basic inequality (1) to a form of an inequality system.

In sections 2 and 3 we use the above mentioned technique to obtain algorithms
similar to the original Bresenham algorithm [3] and to the Bresenham SLICE algo-
rithm [4]. We do not focus here on an optimization of these algoritms, instead we
proceed with a derivation of a new parallel class of algorithms in sections 4 and 5.

2 Bresenham algorithm

Let us reformulate the basic inequality (1) to the form of H + 1 inequalities:

—2H < 2Vz; —2Hy— H <0

where z; is running through the set {0,1,2,...., H—1, H}. This system of inequal-
ities can be solved sequentially. Firstly, we solve 0-th inequality (for zo = 0) which
has only one solution y = 0. (i + 1) — th inequality can be efficiently solved when
we use the values computed during the 7 —th inequality computation, especially the
value of the expression 2V x; —2Hy — H stored in a special control variable D. From
this analysis the following algorithmic primitive BRES can be directly derived.

Algorithm A Algorithm A’

var z,y — contain grid points
var D — contain 2Vzx — 2Hy — H

1. initialization
r=0y=0D=—-H

2. output(z,y)
. output(z,y)
3. if(z = H)

finish
4. x=z+1;D=D+2V
5.if(0> D > —2H)

goto?2.

y=y+1:D=D—2H
7. goto2.

[\l

(@]

var =,y — contain grid points
var D — contain 2Vzx —2Hy — H

1. initialization
zr=0y=0,D=2V - H
Incrl =2V Incr2 =2V —2H

2. output(z,y)

. output(z,y)

3. if(r =H)

finish

4. if(0 > D)

D =D+ Incrl
else

D =D+ Incr2

y=y+1

S.x=x+1

6. goto2.

[\l

The algorithm A’ from the above figure is the original Bresenham’s algorithm
[3] with notation from [6]. One can concern the algorithm A’ as a formal program
tranformation of the algorithm A. The theory of these transformations with respect
to graphics algorithms is developed in [12] and also in [11]. Further, we focus
ourselves only to the algorithmic variants directly following from some reformulation
of the main inequality (1).

In order to express a complexity we will use operation output(z,y) as an atom
for the operation counting. Complexity is described as a function of a number N of
the grid points approximating given line. The algorithms A and A’ have complexity
N=H.

=< g g @

=
] & g g
S "
®
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

oS H N W A o N

Q
a
g

n

Figure 1:

The transition points are labelled with a bullet. Point FE is also a transition point
because of a constraint in the inequality (1).

3 Bresenham SLICE algorithm
Let us define £ = ¢o + 2%, 2% = ¢ + L&, 7y = mod(H,2V),r, = mod(2H,2V).
Then the basic inequality (1) can be modified to the form of V' + 1 inequalities:

T1Yj; — To T1Y; +To

2V 2V

where y; is running through the set {0,1,2,....,V —1,V}. This system of in-
equalities can be solved sequentially. It holds that every inequality has at least one
solution z;, some of them can have more. First of all, the algorithm search for the
greatest element x; for every inequality. At the same time the algorithm uses the
property that the smallest solution for the (i41)—th inequality is exactly the largest
solution of the 7 — th inequality plus one. We will call the transition point the grid
point (z;,y;) where z; is the greatest solution for the j — th inequality mentioned
above. Transition points are coloured black in figure 1. We would like to stress that
the (V + 1) — th transition point has x-coordinate H because of a constraint in the
basic inequality (1). This analysis directly leads to the algorithm B in following
picture. In fact the algorithm enumerates x-coordinates of transition points which
are equal to [c1y; + co + 240 |

Clyj—00+ <l‘i§01yj+00+

Algorithm B
variable Y — y-coordinate of a transition point
variable STARTX, ENDX - starting and ending x-coordinate
of the horizontal segment related to the transition point
variable MOD — contains mod (r1y; + 79, 2V)

1. initialization,Y = 0, STARTX =0, ENDX = ¢y, MOD = ry
2. if (horizontal_segment(START X, ENDX,Y) = FALSE)
finish
3. STARTX = ENDX +1,ENDX = ENDX + ¢4,
MOD = MOD +r,
4. if(MOD > 2V)
ENDX = ENDX +1
MOD = MOD -2V
5. Y=Y +1
6. goto2.

procedure horizontal_segment(STARTX, ENDX,Y)
initialization, X = START X
while(X < ENDX)

{

output(X,Y)

if(X = H)

return(FALSE)
X=X+1

}
return(TRUFE)

The algorithm B is equivalent to the Bresenham’s SLICE algorithm [4]. We do
not focus here on the character of this equivalence. It can be again derived from
theory in [12]. When we use output(x,y) as an atom for the complexity counting,
the complexity of the algorithm B is N = H. When we count passes through
horizontal _segment() the complexity is V' but the worst case is also N = H.

4 Parallel algorithm with m = [logs(V +1)] com-
plexity

Let us modify the basic inequality (1) to the form of the V + 1 inequalities:

H H

We will describe a processor scheme which has m = [logs(V + 1)] rows of pro-
cessors. In k —th row we have 2¥ processors. There is also one temporary processor
dedicated to every row. The processor scheme is designed to compute efficiently V' +1
transition points described by inequalities (2). The processor pattern is shown in

5

the following picture. The processors in the specified position are signed by row
and column values. In the parenthesis are values of the expression (2y; + 1) which
play an important role in the evaluation of the transition points as can be seen
from inequalities (2). These values are only informal, because they are valid only
after k — th step of computation when (k + 1) — th row of processors contain values

22 (1)), [Z£(3)], L& (5)], [#=(7)], The temporary processors are signed only
with row indeces with a similar comment about informal values.

rOow | processors temporary

0 PYH(1) T°(2%)

1 PLi(1) PY2(3) T(2?)

2 P21(1) P??(3) P?»3(5) P>»Y(7) T?%(23)

ko | PRY(1) PR2(3) ... PRPI(2RH3) | TR(2KH)

When the computation proceeds every processor contains the value of the ex-
pression 4-(2y; + 1) in the variables C,R,E where C = [(2y; + 1)], R =
mod(H (2y; + 1),2V), E = H and the temporary processors will contain values
IL(2) in C, R in the same way. The contents of variable £ = H is only copied to
all processors, it will be used for testing the end condition. The processor scheme
works as follows: there is an initialization and m steps of the computation. The
initialization consists of a setting P™' to C = ||, R = mod(H,2V), E = H,
temporary T° is set to C' = |2%], R = mod(2H,2V). The k — th (k starts with 0)
step consists of the following operations in the k — th row:

1. Contents of all 2% processors in k — th row is copied to the (k + 1) — th row,
ie. Pktli = pki 5=1 .. . 2k

2. All processors in £ — th row do in parallel: Cp = Cp + Cr; Rp = Rp +
Rr;if(Rp > 2V){Cp = Cp + 1;Rp = Rp — 2V} where indexes P resp. T
indicate belonging to the P resp. T' processors.

3. Contents of all 2% processors from k — th row is copied to the (k + 1) — th row
beginning at the position 28+, i.e. Pkt1J = pki j =2k 41 . . 2kF!

4. The temporary processor in k — th row do: Cr = Cpr + Cpr; Rr = Ry +
RT; ’Lf(RT Z 2V){CT = CT + 1, RT = RT — 2V}

5. The contents of the temporary processor in k — th row is copied to the tem-
porary in the (k + 1) — th row.

When the process finishes (kK = m) every element in the last row contains x-
coordinate of the transition point. Now, one operation of copying a processor value
to the neighbour leads to the situation when all processors contain sufficient in-
formation to do the horizontal_segment() operation. The appropriate notion of
complexity is to count steps. We have m = [loga(V + 1)] steps.

5 Parallel algorithm with 1 complexity

We start with the same inequalities (2) as in the previous section. Unlike the
three algorithms above this algorithm does not use the values computed for the
neighbouring inequalities in the transition point computation. A natural way to
compute these V + 1 inequalities is to have a column of processors each entry for
one inequality. The algorithm has three steps:

1. The values H,V are spread in parallel to all processors

2. All processors compute L%

sition points

(2y; +1)], these are the x-coordinates of the tran-

3. All processors send their values to the neighbours so horizontal_segment()
operation can be done

6 Conclusions

The algorithm from section 5 can be implemented on the Connection Machine [8, 1]
in a straightforward way. We use PARIS instructions to show schematically how
different structures of the Connection Machine can be used to implement individual
steps of the algorithm. Firstly, we can define a column of V' + 1 processors by
the create-geometry instruction. This allows us to use the efficient communication
pattern of NEWS. The write-to-processor and spread instructions can be used to load
the values H,V to all processors. Then all processors compute the value L%(Qyj +
1)]. Finally, the operation send-to-news can be used to send the information about
transition points to its neighbours.

Section 4 describes only a basic scheme which can be varied in several ways
depending on the topology of the parallel system. For example the scheme can be
optimized according to the number of processing cells. It is possible to use distinct
memory units and units computing modulo 2V add operations. This can lead to
% processing units and V' 4+ 1 memory units.

We would like to stress that it prooves to be very fruitful to transfer as much as
possible of the given graphic problem to raster space. Then further abstraction is
appropriate: i.e. to see these problems as the problems of a structure of the set of
integers.

References

[1] Connection Machine, Model CM-2 Technical Summary. Thinking Machines
Corporation, May 1989.

[2] G. E. Blelloch, Scans as Primitive Parallel Operations. IEEE Transactions on
Computers, Vol. 38, No. 11, p. 1526-1538.

3]

8]
9]

[10]

[11]

[12]

[13]

[14]

J. E. Bresenham, Algorithm for computer control of digital plotter. IBM Sys-
tems Journal, Vol 4, No.1, pp. 25-30, January 1965.

J. E. Bresenham, Incremental Line Compaction. The Computer Journal, Vol.
25, No.1, pp. 116.

N. D. Butler, A. C. Gay, J. E. Bresenham. Line Generation in a Display System,
US patent 4,996,653, Feb. 26, 1991.

James D. Foley, Andries Van Dam, Steven K. Feiner, John H. Hughes, Com-
puter Graphics, Principles and Practise, second edition, Addison Wesley, Read-
ing, Mass., November 1991.

K. Y. Fung, T. M. Nicholl and A. K. Dewdney, Run-Length Slice Line Drawing
Algorithm without Division Operations, Proceedings of EUROGRAPHICS ’92,
Vol. 11, No. 3, pp. C-267 - C-277, 1992.

W. D. Hillis, The Connection Machine. MIT Press.

A. T. Pang, Lina Drawing Algorithms for parallel machines. IEEE Computer
Graphics & Applications, Vol. 10, No. 5, p. 54-59.

J. Rokne and Y. Rao, Double-Step Incremental Linear Interpolation, ACM
Transactions on Graphics, Vol. 11, No. 2, pp. 183-192, April 1992.

R. F. Sproull, Using Program Transformation to Derive Line-Drawing Algo-
rithms. ACM Transactions on Graphics, Vol. 1, No. 4, p. 259-273.

S. M. Ecker and J. V. Tucker, Tools for the Formal Development of Rasteri-
sation Algorithms. New Advances in Computer Graphics. Proceedings of CG
International 89, p. 53-89.

W. E. Wright, Parallelization of Bresenham’s Line and Circle Algorithms. IEEE
Computer Graphics & Applications, Vol. 10, No. 5, p. 60-67.

C. A. Watrich and P. Stucki, An Algorithmic Comparision between Square and
Hexagonal Based grids. Graphical Models and Image Processing, Vol. 53, No.4,
p. 324-339, 1991.

