Hidden Line Problem Formulated as
a Set Union Problem

T. Hriiz!, I. Povazan? and R. Gosiorovsky?

Abstract This paper describes an alterna-
tive approach to the hidden line problem in
computer graphics. It is assumed that a 3D
visible scene consisting of convex planar poly-
gons with known visibility order is given. An
abstract data structure together with a set of
operations for efficient solving of hidden line
problem in the tmage space is defined. The
main operation UNION is then implemented
on the segment tree data structure. The solu-
tion of the visibility problem relies mainly on
a two-way scan conversion process and the
hidden line problem is formulated as a set
unton problem. The worst case complezity of
the presented algorithm is O(snlogs) where
n 1s the number of polygons and s is a reso-
lution. The algorithm is output sensitive in
the tmage space sense. In certain situations
priority order is given or easily computable
and resolution of raster space is very high. In
these situations the algorithm presented can
be faster than Z-buffer.

1 Introduction

Hidden line and hidden surface problem is
an important algorithmic problem in com-
puter graphics. The problem is to efficiently
render a scene consisting from objects in 3D
space so that a realistic simulation of a view
of some observer is generated. The effort is
mainly concentrated on the identification of
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invisible parts of objects obscured by other
objects. The result of an algorithmic solu-
tion of the problem is illustrated in Figures 6
and 5. These are the instances of scenes on
which the basic features of the presented al-
gorithm are later experimentally illustrated.

A realistic rendering of objects in 3 di-
mensional space is an extremely complex and
computationally intensive task, therefore cer-
tain simplified models have been developed
to get at least reasonable rendering speed.
One of them is so called wire-frame model,
which models surfaces of rendered objects
with boundary polygons of faces approximat-
ing a given object. Such model of a set of
tori is in Figure 6. Because the rendered
parts of faces are only their edges (boundary)
this model gives rise to the hidden line prob-
lem, where invisible parts of lines obscured
by surfaces are sought. The result is that
the visible parts of surfaces are represented
by visible parts of lines on the boundary of
approximating faces. In this setting hidden
line problem is different from hidden surface
problem which attempts to solve the visibil-
ity in each point of the object surface. The
latter setting, in the case when an object is
approximated by polygonal faces, means that
the whole area of polygon is rendered and its
visibility is decided.

The algorithm proposed in this article at-
tempts to give a fast solution specialized to
the above mentioned hidden line or wire-
frame model problem. Then it is natural to
ask whether it has a sense to deal with such
simplified model any more, facing todays
very fast computers on which for example Z-
buffer (realized usually in hardware) which
is a typical hidden surface technique can be
reasonable fast. The response is definitively
positive because there are at least two impor-
tant situations where the wire-frame model
is fully justified. It is common practise, that
users of graphics systems when they want to
navigate through complex scene they switch
to wire-frame model because this gives them



much higher speed than the full rendering.
The latter beeing still far from realistic speed
on todays fastest graphics workstations. The
authors have observed that users in such situ-
ations often use only wire-frame model with-
out hidden line removal because neither hid-
den line removal algorithms deliver the suf-
ficient speed. This problem is going to be
really critical when the resolution of raster
device approaches few thousands times few
thousand which is the case of printing indus-
try.

In the following sections, the article fo-
cuses mainly on the hidden line problem.
There are two fundamental approaches to
the hidden line removal. The first approach
is called object space approach and relies
in various ways to represent objects in the
scene by discrete combinatorial representa-
tion. The basic objects used are geomet-
rically defined subsets of Euclid space R?
( i.e. points, edges, polygons, polyhedra
e.t.c.). The brute force method of this kind
compares every object with other objects and
finds the visible resp. invisible parts of lines.
The computational complexity is O(n?). The
object space class of methods are improved
from early sixties [1, 4]. Recently, by meth-
ods of computational geometry, new results
have been obtained mainly with respect of
the notion of output sensitivity. In [2] a sim-
ple output sensitivity method for triangles is
presented which runs in time O(nvklogn)
where k is combinatorial complexity of the
output visibility map and n is the number
of edges. In [3] the method is further im-
proved to solve also the cyclic overlap and
intersection of polygons. The computational
complexity is O((n + k)logn). The hidden
line problem for isothetic parallelepipeds is
solved in [6] by object space method with
complexity O(nlog®n + dlogn) where d is a
number of edges of the display.

The second fundamental approach (the im-
age space approach) is to solve the visibility
in each pixel of image space. A straightfor-
ward way relies in examining all objects and
determining which of them is the closest to
the viewer on the projector passing through
a given pixel. Image space methods are often
realized in hardware. The Z-buffer method is
a widely used representative of this class but
it has a drawback in the case of hidden line

removal that it must process also the inte-
rior of the face, therefore when the number
of objects and the pixel resolution is large the
computational cost can be very high.

The above classification is only a basic pat-
tern. Many algorithms combine above ap-
proaches (for survey on hidden line problem
see [1, 4]). The algorithm proposed here is
in essence an image space algorithm but the

structures used are more rich compared to
the Z-buffer.

In the following parts, we analyze the pro-
posed algorithm under the assumption that
the priority order of faces is given. How-
ever, when reasonably simple preprocessing
(sorting) is possible, it is sufficient to add
the term nlogn to get the overall complex-
ity O(nlogn + snlogs). On the other hand,
for Z-buffer we obtain O(s*n) when the res-
olution is taken into the account.

The comparision shows that in the situ-
ations when preprocessing can be neglected
and the resolution is very high the proposed
algorithm can be better than Z-buffer be-
cause the latter must process the whole area
of a given face whereas the proposed algo-
rithm processes only the boundary. This
conclusion is also supported by the results
of experiments resumed in Figure 7 resp. 8.
They show that when the mean area of face is
larger than 64 pixels (the number is specific
for the architecture used - in our case MIPS
DEC5000) the proposed algorithm is faster.
64 pixels represent about 0.01% of the screen
with resolution 1024x1024.

The article is organized in the following
way. In section 2 one of the generally ac-
cepted models of the scene without cyclic
overlaps and intersections is recalled. Sec-
tion 3 describes the abstract data structures
that are used together with their implemen-
tation. The main technical lemma about the
worst case of a UNION operation on segment
trees is derived. Section 4 presents the algo-
rithm and the main theorem about the worst
case of the algorithm is proved. The com-
putational experiments are described in Sec-
tion 5. Section 6 comments our development
and suggests some further directions of re-
search.



2 The model of scene

Let us denote by P? the input set of convex
polygons in 3D space without cyclic overlap
and intersections. It is supposed that prior-
ity order is known so the input set can be
enumerated as:

Pd=(P3,P3,... P}

where polygon P? is the front polygon. Ac-
cording to our approach polygons are pro-
cessed subsequently from P} to P2 (a front-
to-back order).

Because priority order is known the follow-
ing representation of our problem can be es-
tablished: the polygons are projected to the
viewing plane where we obtain a sequence
of overlapping two dimensional convex poly-
gons in plane

P> =(P2,P2,... P.. . P2,

The visibility priority assigned to polygon
P? equals 1. The above representation is also
called 21D model [10].

The projection of vertices of polygons P?
to the viewing plane determines the pro-
jection of a whole polygon. The (x,y)-
coordinates of projected vertices are scan
converted to the raster space integer coor-
dinates. By this simple preprocessing a se-
quence of polygons characterized by integer
coordinates of their vertices is obtained. The
sequence represents a front-to-back visibility
order. The above described sequence is an in-
put to the algorithm CU which is introduced
together with its data structures in the fol-
lowing sections.

3 Data structures for
hidden line problem

3.1 Abstract data structures

Raster space is a set of ordered pairs (z,y)
of integers defined as RS(Xyes, Yres) =
{(z,y) € 22 | 0 < 2 < Xp5,0 <y < Yy},
where 7 is the set of all integers.

The basic data structures called I-
structures and C-structures are schemati-
cally illustrated in Figure 1. I-structure is an
abstract data structure representing a union

of a finite system of disjointed closed inter-
vals on real line with integer end-points. I-
structures are denoted by the capital letters
S, R, Q. End-points and intervals belonging
to some I-structure are denoted in the follow-
ing way:

(y rs)f.
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The sense of the above notation is that I
means the left end-point of the 7 — th inter-
val of the I-structure S. Sometimes an I-
structure is treated as a numbered sequence
of integer pairs.

UNION operation is defined on the set of
all I-structures. Let S, R are I-structures,
then the UNION operation is defined as I-
structure 7' representing the minimal system
of closed intervals with integer boundaries
equal to the set union of interval systems rep-
resented by S and R.

In addition to the UNION operation also
an operation BUILD is needed. Operation
BUILD works on special I-structures S, R
where S = (I, 7%) contains only one interval
or S is empty and R contains exactly one de-
generated interval ({® %), When S is empty
the result of BUILD is (I, %) | otherwise
the result is I-structure which represents a
set union of the intervals (I°, %) and (r°, %)
when r° < [® resp. (I%,7) and (%, 7°) when
rd >R

The purpose of BUILD operation is to cre-
ate an interval from two points. This situ-
ation takes place in algorithm CU when an
atomary contour for a convex polygon is built
(the definition of an atomary contour fol-
lows).

C-structure is an ordered pair of sequences
of I-structures C = (S%,5Y) . The first
sequence is related to the x-axis of raster
space, the second one to the y-axis of raster
space. C-structures are denoted by capital
letters. Subscript ¢ and superscript x like in
S? means an I-structure at i-th position of
the x-axis sequence. S¥ resp. SY sequence
has exactly X,.s resp. Y,.s I-structures. In
the case of the capital letter without indices,
it is clear from the context whether an I-
structure or C-structure is meant. On the
set, of all C-structures a UNION operation is
defined as performing the UNION operations
on all corresponding I-structures.
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Figure 1: The figure illustrates I|-structures
and C-structures. Information about point B
is not contained in the x-axis sequence of a C-
structure, this is the reason for use of the y-axis
sequence. By means of a C-structure point A
can be identified as inside and point C as out-
side the region. For example, S7 =< 3,9 >
U< 12,19 >, Sip =< 6,6 > U < 14,15 >
are |-structures.

Let a convex polygon in the plane R? is
given. Atomary contour is the C-structure
Q = (5%, 5Y) approximating a boundary of
such region where the following condition
holds: if point (4, j) of raster space is in this
region then j must be a member of some in-

terval (l,r)if and at the same time ¢ must

be a member of some interval (/, r)fnfy . The
atomary contour of a convex polygon can
be described also constructively. Firstly, the
edges of the polygon are scan converted to
raster space. Because of a convexity, the
polygon can be represented by simple inter-
val (span) on every x and y line of raster
space. In fact, this is the method which is
used in algorithm CU. To generate the cor-
responding I-structures operation BUILD is
used.

Atomary contours form a subset of C-
structures. Contour is atomary contour or
a union of some contour with atomary con-
tour.

3.2 Implementation

Now one can look for algorithms and data
structures which perform the UNION opera-

01 23 |34 | 45 |56 | &7 | 78 | 89 | 910 | 1001|1112 | 12,13 |13,14 |[14,15]|15,16

Figure 2: The segment tree for universum <
0,16 >. The interval embedded is < 1,15 >.
Allocation of an interval is emphasized with
double box.

tions on C-structures in the most effective
way. This leads to the elementary opera-

. . . SF .
tion of range searching of the point [’ in

I-structure R? = ?:1(11% : r?j) . A vari-
ety of methods can be used. Algorithm CU
performs UNION operation between general
[-structure with n intervals and a simple I-
structure consisting of one interval. A brute-
force method is to use a simple list of inter-
vals where the worst case complexity of the
UNION operation is O(n) for an I-structure
with n intervals.

Another method, which is more efficient,
is to use a variation of data structure called
segment tree [6]. An example of segment tree
is in Figure 2. In the following section, an in-
stance of the segment tree structure together
with a basic operation UNION is described.

Segment tree is a highly flexible and effi-
cient data structure for performing various
operations on interval systems. Usually it
is used to maintain interval systems on real
line to support a solution for various tasks
from computational geometry. In the fol-
lowing brief description the basic features of
segmented trees are revised [6] to the point



where a new operation UNION on a segment
tree is defined.

The segment tree is a binary tree. Ev-
ery node carries an information about some
interval with integral boundaries. These so
called standard intervals become smaller and
smaller in the divide and conquer fashion go-
ing down in the tree. Then any other given
interval can be decomposed effectively to
these intervals (when it does not exceed the
basic interval covered by the segment tree).
The segment tree is a static decomposition
of some basic interval called universum. The
dynamics is in various operations on systems
of subintervals of the given universum. Ac-
curately, let T'(I, ) denotes a subtree with an
interval < [, >; | < r assigned to the root.
Let functions B(v) = [, E(v) = r return the
left and the right boundary of an interval as-
signed to the node v. The tree is defined re-
cursively, in a given node v the left subtree is
given as T'(l, | (B(v)+E(v))/2]) and the right
subtree is given as T'(|(B(v) + E(v))/2],r) if
E(v) — B(v) > 1 otherwise a leaf has been
reached. The roots of these subtrees are de-
noted S'(v),S"(v). Every level of segment
tree defines a partition of the universum in a
straightforward way: for example excluding
the left boundary from every standard inter-
val in that level.

The segment tree is balanced where all
leaves belong at most to two contiguous
levels. The depth of the segment tree is
[log,(r —1)] because the leftmost (the short-
est in the tree) path represents in fact re-
cursion 1,11 = |7r/2],70 = r — | which
reaches value 1 exactly in |log,(r — )] steps
but the tree can be one level deeper when
logy(r — 1) > |logy(r —1)].

The basic option how to use a segment tree
is to store intervals ( belonging to some uni-
versum) in a dynamic way i.e. supporting
insertion and deletion operations. The op-
eration INSERT (b, e,root(T)) does a par-
titioning of a given interval < b,e > in the
fashion described by the algorithmic primi-
tive in Figure 3.

The insert opera-
tion INSERT (b, e,root(T)) does a walk in
T with the following structure: there is an
initial path Py (can be empty) from the root
to a node vy called fork,a left path P, from
the fork and a right path Pgr from the fork.

procedure INSERT(b,e,v)
10beginif (b < B(v)) and (E(v) < e) then
e>tovw

20 allocate < b,

30 else

40 begin

50 if (b < [(B(v) + E(v))/2]) then
60 INSERT (b, e, S'(v));
70 1f(|_(B(U) —|—E( ))/2_| < e) then
80 RT(b, e, 57 (v));
90 end

100end.

Figure 3: Algorithmic primitive INSERT

Either the interval < b,e > is allocated en-
tirely to fork (than Py, Py are empty and em-
bedded interval must be equal to some stan-
dard interval) or all right sons of nodes of Py,
and all left sons of nodes of Pr define the
fragmentation of the interval except the fol-
lowing two degenerated cases: Pp, consists of
exactly one node and Ppg is not degenerated
or Pg consists of exactly one node and Py, is
not degenerated.

To see the above structure of operation
INSERT(b,e,root(T)) the notion of cut can
be used. The partition of universum corre-
sponding to level [ cuts the interval < b,e >
k times when k of the boundary points of
standard intervals of this partition are in
the interior of < b,e >. A definitoric level
lo cuts from the definition every subinter-
val of the universum exactly once. The set
of levels which cut the interval < b,e >
is not empty. Let [,, is the minimal level
from this set. [, cuts the processed in-
terval exactly once (when it cuts twice ex-
actly one point vanishes in lower level and
this is a contradiction with minimality of
lm). The fork is one level lower (see Fig-
ure 2). In every level lower than [, the in-
terval < b,e > is contained in some stan-
dard interval therefore the algorithm primi-
tive INSERT (b, e,root(T)) (Figure 3) sub-
sequently enters the recursion until the fork
is found. So the existence and uniqueness of
fork has been obtained.

If the processed interval equals not to any
standard interval then the both paths Pr,, P
are not empty.

Once a fork is obtained the left path P
can be investigated. The analysis of the
right path Pg is analogical. Left path P
can be built as a result of the application of



function UNION (b,e,v)

10 begin

20 if (U(v)) then return (U(v))

30 if (b < B(v)) and (E(v) < e) then

40 begin

50 return(U(v) = true)

60 end

70 else

80 beginif (b < | (B(v) + E(v))/2]) then
90 begin

100 l=UNION(b,e, S (v))
110 end

120 else

130 begin

140 1 =U(S'v))

150 end

160 if (e > [(B(v) + E(v))/2]) then
170 egin

180 r =UNION (b,e, S"(v))
190 end

200 else

210 begin

220 r=U(S"(v))

230 end

240 return(U(v) =1 and r)

250 end

260 end.

Figure 4: Algorithmic primitive UNION

INSERT(b, E(S'(fork(T))), S'(fork(T)))
to the subtree starting at the left son of
fork.  The interval processed now is <
b, E(S'(fork(T))) >. Here the situation is
more special because the right end-point of
processed interval equals to the right end-
point of the universum. This leads to the fact
that either immediately the root is allocated
(of the subtree starting at the left son of fork)
and this branch ends or the algorithm goes
deeper in the tree and looks for fork. When
the fork is found the right son will be im-
mediately allocated and the process follows
through the left branch.

The above analysis of operation INSERT
shows that the worst case complexity of oper-
ation INSFERT is proportional to the depth
of segment tree [log,(r —1)].

If it is wanted to store more intervals into
the segment tree a nonnegative integer C(v)
can be assigned to every node v which is in-
cremented whenever < b,e > is allocated to
v. The applications of segment trees usually
differ in a way how an allocation of < b,e >
to a given node v is made and what informa-
tion is maintained in a node. For example
the deletion operation has the same struc-
ture as the insert operation differing only in
the allocation operation (step 20).

Now we are in the position to tailor the
segment tree data structure for the purpose
of hidden line problem. The goal is to use
segment tree to maintain I-structures and to
do UNION operation on them as it was de-
fined in the previous section. In fact the basic
building block is the UNION operation be-
tween an I-structure already in the tree and
one interval. A logical variable U(v) is as-
signed to every node and the allocation of
an interval to a node consists simply in a
setting this variable to true. The operation
UNION (b,e,root(T)) is defined by the al-
gorithmic primitive in Figure 4.

The operation UNION (b, e, root(T)) real-
izes the following two ideas:

1. the algorithm proceeds down into the
tree in the same way as during the IN-
SERT but if a node already allocated
is encountered the process stops and re-
turns to higher levels.

2. during the returning process the algo-
rithm inquires whether the both sons are
allocated. If they are allocated, the cur-
rent node is also allocated.

It must be remarked that the algorithmic
primitive presented is not meant to be ef-
ficient in implementation. The main con-
cern has been simplicity of presentation and
of comparison with operation INSERT. Au-
thors have designed several efficiency im-
provements for the concrete implementation
of algorithm for UNION operation. There is
also a question how to establish a visibility of
certain end-point of embedded interval, but
this can be solved by straightforward search
down in the tree along the left-most respec-
tively right-most path.

Lemma 1 The worst case complexity of
the operation UNION (b,e,root(T(l,7))) is
O([logy(r — 1)]).

Proof. From the definition of the op-
eration UNION (b, e, root(T'(l,7))) it follows
that when an interval disjoint to the I-
structure already in the tree is processed the
operation has the same course as the op-
eration INSERT (b, e,root(T)). But when
the processed interval is intersecting the I-
structure already in the tree then the opera-
tion is shorter.



On the other hand all processed inter-
vals can be the same and of unit length so
that every UNION operation reaches maxi-

mal depth of the segment tree.

It is straightforward to see that when uni-
form distribution on the input intervals is
assumed the asymptotical average case com-
plexity is O(1) because after enough num-
ber of input intervals the root should be
allocated. Then all subsequent UNIONs
have the complexity O(1). But the uni-
form random distribution on intervals is
surely not describing average hidden line
problem properly. This extremal exam-
ple only supports the suggestion that in
real applications the complexity of the op-
eration UNION (b, e, root(T(l,r))) is better
than the worst case O(logy(r —[)). The fea-
ture that the algorithm never goes deeper in
the tree when an allocated node has been
reached is responsible for the output sensi-
tivity of the whole algorithm.

4 The algorithm

The input to the algorithm is a visibility
ordered sequence of overlapping two dimen-
sional convex polygons in the plane:

P?*= (Pl P;,...,P? ... ,P?).

Algorithm CU.

1. Initialize the contour @ = (S*,SY), i =
1.

Comment: After initialization every I-
structure of the sequences S®,SY of the
C-structure @) is empty.

2. Take a polygon P? from the sequence
28

3. Initialize the atomary contour B =
(A*  AY). Interpolate to generate the
points p; = (z;,y;) of the boundary
of the polygon. For every point p; =
(xi, y;) obtained, perform the following
two steps:

(a) Use the BUILD operation on
[-structure A7 and I-structure

(Yi, i)

(b) Use the BUILD operation on
I-structure Azi and I-structure

(x4, 7).

Comment: Bresenham interpolator is
used for the generation of the raster
space points p; = (x;,vy;) . When this
step of the algorithm CU is finished a
complete atomary contour is built. Usu-
ally Bresenham interpolator works so
that raster space points coordinates are
subsequently generated and frame buffer
15 updated in these points by means of
some set_pizel(z,y) operation. In our

case set_pizel(x,y) operation is replaced
by the BUILD operation.

4. Perform the UNION operation between

the contour () and the atomary contour
B.

Comment: This requires use of the
UNION operation on each I-structure.
The UNION operation contains range
searching of boundary points of inter-
vals of the atomary contour B in in-
terval systems of the contour ). As a
side affect of the former the information
whether these points are in some inter-
val of the contour @) or not is obtained.
If the boundary points of intervals of B
are not in any interval of @), the value
in frame buffer is updated. In fact this
1s the only place in the algorithm where
graphics operations in frame buffer can
be done.

5. 1=1+1
6. If i <n go to step 2.
7. end of CU.

To analyse the worst case complexity of al-
gorithm CU denote with s = maz(X,es, Yres)
the maximum of the raster space resolutions
in both axes and with d(P?) the following
quantity for a given scene P3:

d(P3) = géa,i)}g 2(($maw _-rmin) + (yma:c _ymm))

where T,.00, Tmin are the minimal x-
coordinate and the maximal x-coordinate of
polygon P, analogically Yz, Ymin-



As was mentioned in the introduction the
algorithm CU is output sensitive as can be
seen from the following: When there is a
polygon which hides all other polygons then
all I-structures processed throughout the run
of algorithm CU consist of simple intervals.
Therefore the complexity of the UNION op-
eration is lower in this case. On the other
hand, to establish accurately a notion of out-
put sensitivity in raster space which can be
used in all circumstances is not simple. Here
only some possibilities are mentioned which
need more investigations to decide between
them. Another aim of this paragraph is to
motivate the expression of the complexity
of operation UNION as a function f(¢,s) of
some output sensitivity parameter ¢t and a
resolution s. If the output sensitivity pa-
rameter ¢ is defined as a maximal number of
intervals in any I-structure throughout the
whole computation and UNION operation is
implemented on I-structures as a simple list
of intervals then the function f(¢, s) equals ¢.
Another possibility is to implement UNION
operation on a segment tree and to define
the output sensitivity parameter ¢ as a max-
imal depth in any tree achieved throughout
the whole computation. The function f(t, s)
then takes the form f(¢,s) =t < log, s.

Theorem 2 Let P> = (P}, P3,...,P3) is a
system of n non-intersecting planar convex
polygons without cyclic overlap and let the
front-to-back priority order of the system P>
1s known. Then hidden line problem can be
solved in time proportional to O(dnf(t,s))
where d = d(P?) and f(t,s) is the worst case
complexity of UNION operation throughout
the whole computation of a scene as a func-
tion of resolution s and output sensitivity pa-
rameter t.

Proof. It follows from the definition of al-
gorithm CU that an upper bound on the time
to produce atomary contour equals O(d) be-
cause Bresenham interpolator is used to ob-
tain an atomary contour of a polygon. The
upper bound on UNION operation between
atomary contour and contour is O(2f(t, s))
of time units because the atomary contour
contains no more than g of I-structures and
the UNION operation on intervals has a
worst case complexity O(f(t, s).

Finally, for n polygons the upper bound on
complexity of the algorithm CU is:

O(nd + ngf(t, s))

QED

Adding the worst case complexity for
UNION operation achieved with the segment
tree implementation the following corollary
can be derived:

Corollary 3 Let the UNION operation for
an I-structure with a given interval is imple-
mented on a segment tree as is described in
section 3.2. Then the worst case complex-
ity for algorithm CU is O(nd + nit) where
t < log, s is a mazimal depth of any alloca-
tion in all segment trees achieved throughout
the whole computation of the scene.

Proof. The universum for every segment
tree is a subinterval of the interval < 0,s >
and therefore according Lemma 1 the worst
case complexity of the UNION operation is
f(t,s) = O(logy(s)). Denoting by t the max-
imal depth of any allocation achieved in all
segment trees throughout the whole compu-
tation, it is obtained that ¢ < log,(s) and
f(t,s) = O(t). The parameter ¢ expresses
the output sensitivity in raster space sense.

It holds that d < s, t < log,s. Then the
complexity of algorithm CU can be expressed
as O(snlog,s). If the resolution is consid-
ered to be constant and the number of poly-
gons is very high (n > s), the running time

is O(n).

5 Experimental Results

In the previous section was shown that if pri-
ority order is known algorithm CU is asymp-
totically very fast. To see the practical im-
portance of this algorithm an experimental
study has been made which compares algo-
rithm CU with Z-buffer. Z-buffer is very sim-
ple algorithm and reasonably fast, therefore
it is often realized in hardware. So the com-
parison with Z-buffer gives a relevant infor-
mation about practical value of the proposed
algorithm.
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A scene consisting of a set of 2000
positioned triangles with area 400

As the following experiments show, Z-
buffer is slower than algorithm CU when the
faces have larger area. The reason is that
Z-buffer must process the whole area of the
given face whereas algorithm CU processes
only the boundary. The above argument
holds only when the preprocessing complex-
ity can be neglected and at the same time
resolution is taken into the account. How-
ever, these circumstances can occur in cer-
tain practical situations as is shown by ex-
periments.

The experiments has been made in Lab-
3D interactive software system developed
at authors site on DEC5000/240 RISC sys-
tem. The experiment consists of two different
scenes. The first scene consists of randomly
positioned triangles in 3D space. The param-
eters of the scene are the number of polygons
and the area of the polygons. This scene is
used for analysis of overall features of algo-
rithm CU and for comparison with Z-buffer.
An instance of such scene is in Figure 5 con-
sisting of 2000 triangles with constant area of
400 pixels. The results of the experiments are
summarized in Figure 7. Firstly, a series of
experiments was made to identify an area of
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Figure 6: A scene consisting of 40000 pla-
nar polygons approximating a set of tori in 3D
space.

triangle for which algorithm CU has approxi-
mately the same speed as Z-buffer. This area
was about 64 pixels. Then the experiments
was made with larger area of 400 pixels and
smaller area of 20 pixels. The Figure con-
tains two curves for each triangle area, one
for algorithm CU and one for Z-buffer. The
result is that if the area is larger than 64 pix-
els, algorithm CU is faster. In the case of 400
pixels (about 0.04resolution 1024x1024) CU
is already much faster than Z-buffer.

The second scene which is on Figure 6
consists of a set of tori in 3D space. The
parameter of this scene is a growing num-
ber of faces approximating the same set of
tori, while the total area remains constant.
This series of experiments compares various
implementations of UNION operation on in-
terval systems. Also, the output sensitivity
of the proposed algorithm is tested on this
scene. The results are summarized in Fig-
ure 8. There is one curve for brute-force im-
plementation with linear lists of intervals de-
noted with “Contour Union 2” and one curve
for implementation on augmented segmented
trees denoted with “Contour Union 1”. To
test the output sensitivity features of the al-
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Figure 7: The Figure summarizes experimental
results on the scene in Figure 5. It contains two
curves for each triangle area, one for algorithm
CU and one for Z-buffer. CU denotes algorithm
CU, ZBF denotes Z-buffer and P denotes area
of triangles in pixels.

gorithm the same scene has been hidden with
one large square face. The results of the ex-
periment series for both implementations of
UNION are in the same figure. The sorting,
which is an inevitable part of front-to-back
class of algorithms, is not influential even if
the scene contains number of faces of order
100000 as can be seen from the last curve in
Figure 8, which shows only the sorting time
whereas other curves show the total time.

6 Conclusions

The experimental data and the worst case
analysis of the proposed algorithm show that
for the scenes with larger number of faces and
higher resolution interesting speed-up can be
achieved. On the other hand the justifica-
tion of the proposed algorithm depends on
the scene complexity and particular system
architecture. It is reasonable in practical sit-
uations to have at the disposal few different
hidden line algorithms. In this case, the pro-
posed algorithm seems to be a good candi-
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Figure 8: The Figure summarizes the results
of the series of experiments with various imple-
mentations of UNION operation on the scene
in Figure 6.

date.

The technique presented, contains a nat-
ural parallelism suited for massively parallel
machines. This is because operations on I-
structures can be done independently of each
other. When for example a processing ele-
ment is allocated to every I-structure in the
C-structure (i.e. the number of allocated el-
ements equals X, .5 + Yyes) then the atomary
contour is generated in time O(1).

It can be suggested (mainly relying on the
[11]) that faster implementations of abstract
UNION operation are possible. The worst
case complexity log, n where n is the number
of intervals instead of having log, s where s is
the resolution can be expected. Also the be-
haviour of the segment tree implementation
in an average problem would need a further
research.

The algorithm presented in this paper
could be improved to solve intersections of
polygons resp. cyclic overlap. On the other
hand when the scene is face coherent [4], the
brute-force sort can be sufficient to obtain a
good solution. Because of a high speed of
algorithm CU it is possible in real applica-
tion to approximately solve the intersection



problem by firstly decomposing the polygons
to much smaller parts and than relying on
the face coherency.

As was mentioned earlier algorithm CU is
output sensitive. But the deeper understand-
ing of output sensitivity in raster space sense
would need further investigation. What is
clear is that the output sensitivity of algo-
rithm CU is weaker than the output sen-
sitivity of the algorithm from [2] because
all edges are virtually interpolated. On the
other hand scan conversion is incorporated
into the heart of algorithm CU therefore the
algorithm CU can be accurately compared
with object space algorithms only if the scan
conversion cost is added to object space al-
gorithms.

Because algorithm CU is output sensitive
the method of grouping introduced in [2]
could be used to improve its performance.
But the concrete way how to choose appro-
priately the groups would need a further re-
search.
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