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Abstract

Recently, Ahnert and Fink [AF08] showed that some classes of directed networks are
cleanly separated in the space of the clustering signature. In this work we will study the
relation hierarchy among subgraph distributions in directed networks and derive how the
clustering signature fits into this hierarchy. Thereby we gather a fundamental understanding
of the network dynamics and build a framework for the analysis of stochastic processes.

1 Introduction

Recently, there has been considerable interest in stochastic processes that generate small world
networks [WS98] and networks with scale free degree distributions [BA99]. In [HNA08] the
authors defined a process that creates equilibrium networks [FDPV04] without multiple edges
and self-loops. Evans and Plato proved in [EP07] for an edge rewiring process that the degree
sequence of the created network is scale free distributed. However, there are no formal proofs for
the distribution of most other equilibrium network models known.

In [AF08] Ahnert and Fink analyzed 16 networks of five different types (social networks, ge-
netic transcription networks, word adjacency networks, food webs and electric circuits). They
showed that the clustering signature which generalizes the clustering coefficient for directed net-
works, cleanly separates these five classes. This means that there are structural differences be-
tween different types of directed networks.

In this report we define some structures which have influence on the clustering signature.
Furthermore, we build a hierarchy by deriving the relations among all this structures and the
clustering signature. In Section 1 we set up the necessary notation and terminology. In section
3 we add a few observations to the definitions. Section 4 establishes the hierarchy between the
distributions in directed networks. In section 5 the relations between the distributions are derived
while in the sixth section it is shown that in some special cases these relations are much simpler.
The last section contains a short summary and an outlook on further research in this area.

2 Definitions, Distributions

A directed network is defined by a set of vertices V that are connected by arcs (A ⊆ V × V ).
An arc (u, v) consists of a source vertex u and and a target vertex v. We denote N := |V | as the
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number of vertices and L := |A| as the number of arcs in the network. To analyze the clustering
signature we are interested in the distributions of vertex degrees, arcs, directed wedges (two arcs
that share a common vertex) and triangles.

2.1 Vertices

Definition 2.1 (In- and out-degree). To measure the number of arcs that have a vertex v as
source vertex we define the out-degree

deg+(v) := |{(v, u) ∈ A|u ∈ V }|

and similar the in-degree
deg−(v) := |{(u, v) ∈ A|u ∈ V }|.

Definition 2.2 (Degree probabilities). We denote
−→
N+(k+) as the number of vertices of out-

degree k+ and
−→
N−(k−) as the number of vertices of in-degree k−. From this quantities we derive

the probability that a vertex has out-degree k+ or in-degree k−:

−→
P −(k−) :=

−→
N−(k−)

N

−→
P +(k+) :=

−→
N+(k+)

N

Sometimes we will also use the joint distribution of in-degree and out-degree. Therefore we define−→
N v(k+, k−) as the number of vertices of in-degree k− and out-degree k+. Hence

−→
P (k+, k−) :=

−→
N (k+, k−)

N
.

Definition 2.3 (Mean degree). Now we define the mean in-degree, the mean out-degree and the
mean total degree as

k+ :=
1
N

∑
k+

−→
N+(k+) · k+,

k− :=
1
N

∑
k−

−→
N+(k−) · k−,

and
k :=

1
N

∑
k+,k−

−→
N+

v (k+, k−) · (k+ + k−).

Note that whenever we write
∑

k+ , this means the summation of all positive values of k+

which is equivalent to
∑∞

k+=1.
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u v

Figure 1: An arc with head v and tail u.

2.2 Arcs

Definition 2.4 (Arc distribution). Let
−→
L (k+, k−) denote the number of arcs a := (u, v) with

deg+(u) = k+ and deg−(v) = k−. Then the arc distribution is defined by

−→
P a(k+, k−) :=

−→
L (k+, k−)

L

Sometimes we refer to k− as the in-degree and to k+ as the out-degree of arc a.

2.3 Reciprocity

Sometimes we will use the notion of reciproc arcs. An arc (u, v) is reciproc if and only if the arc
(v, u) is also part of the network.

Definition 2.5 (Reciprocity distribution). The reciprocity distribution
−→
P R(t|k+, k−) denotes the

probability that a given vertex of in-degree k− and out-degree k+ has t reciproc arcs.

2.4 Wedges

Wedges are paths of length two. In a directed network we have three different types of wedges.
The directed path which is a path of length two, the broadcast wedge which consists of a central
vertex and two outgoing arcs and the sink wedge that is defined by a middle vertex and two
incoming arcs.

Definition 2.6 (P-wedge). We write WP (k+
l , k

−
m, k

+
m, k

−
r ) for the number of directed paths of

length two with deg+(vl) = k+
l , deg

−(vm) = k−m, deg
+(vm) = k+

m and deg−(vr) = k−r where vm is
the middle vertex.
Furthermore let WP denote quantity of P-wedges in the network. Clearly the P-wedge distribution
is defined by

PP (k+
l , k

−
m, k

+
m, k

−
r ) :=

WP (k+
l , k

−
m, k

+
m, k

−
r )

WP
.

Definition 2.7 (B-wedge). Analogically let us denote WB(k−l , k
+
m, k

−
r ) as the number of broadcast

wedges with deg−(vl) = k−l , deg
+(vm) = k+

m and deg−(vr) = k−r where vm is again the middle
vertex.
Then WB denotes the quantity of B-wedges in the network and the B-wedge distribution is defined
by

PB(k−l , k
+
m, k

−
r ) :=

WB(k−l , k
+
m, k

−
r )

WB
.
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Figure 2: The three different kinds of directed wedges.

Figure 3: The feedback loop (left) and the feed-forward loop (right).

Definition 2.8 (S-wedge). The number of sink wedges with deg+(vl) = k+
l , deg

−(vm) = k−m and
deg+(vr) = k+

r is WC(k+
l , k

−
m, k

+
r ) and the total number of S-wedges is WS.

PS(k+
l , k

−
m, k

+
r ) :=

WS(k+
l , k

−
m, k

+
r )

WS
.

2.5 Directed Triangles

There are two types of directed triangles. The feedback loop (a directed loop) and the feed-forward
loop.

Definition 2.9 (FeedBack loop FB). TFB(k+
1 , k

−
2 , k

+
2 , k

−
3 , k

+
3 , k

−
1 ) denotes the number of feedback

loops containing vertices of the given degrees and TFB is the total quantity of feedback loops in
the network.
The feedback loop distribution is defined by

PFB(k+
1 , k

−
2 , k

+
2 , k

−
3 , k

+
3 , k

−
1 ) :=

TFB(k+
1 , k

−
2 , k

+
2 , k

−
3 , k

+
3 , k

−
1 )

TFB
.

Definition 2.10 (FeedForward loop FF). TFF (k+
1 , k

−
2 , k

+
2 , k

−
3 , k

+
3 , k

−
1 ) denotes the number of

feedforward loops containing vertices of the given degrees and TFF is the total quantity of feedfor-
ward loops in the network.
The feedforward loop distribution is defined by:

PFF (k+
1 , k

−
2 , k

+
2 , k

−
3 , k

+
3 , k

−
1 ) :=

TFF (k+
1 , k

−
2 , k

+
2 , k

−
3 , k

+
3 , k

−
1 )

TFF
.
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FFB

FB

FFC

FFA

Figure 4: The four directed triangles from the point of view of the white node. The clustering
signature is defined as a quantity which describes their occurence in the network.

2.6 Two ways of defining clustering signatures

The clustering signature is a quantity analogical to the clustering coefficient in undirected net-
works. The local clustering coefficient for a vertex v in an undirected network is defined as the
number of connected pairs of neighbors of v divided by the number of pairs of neighbors of v.
In directed networks there are two different types of neighbors and they can be connected by two
different links. Therefore we get the four different types of local clustering structures drawn in
Figure 4.

We will use the definition of the clustering signature from [AF08].

Definition 2.11 (Clustering signature[AF08]). The local clustering signature for vertex v is the
four dimensional vector:

C(i) = (
N

(i)
FB

M
(i)
B

,
N

(i)
FFA

M
(i)
A

,
N

(i)
FFB

M
(i)
B

,
N

(i)
FFC

M
(i)
C

)

where N (i) is the number of triangles of a certain type in which the vertex participates and

M
(i)
B :=

∑
u∈Γ+(i)

v∈Γ(i)

(1− δu,v),

M i
A := deg+(i) · (deg+(i)− 1)

and
M

(i)
C := deg−(i) · (deg−(i)− 1).

Here δ denotes the Kronecker delta and deg−(v) (deg+(v)) the indegree (outdegree) of v . The
global clustering signature is the average local clustering signature

C =
1
N

N∑
i=1

C(i)
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and we also use the definition of the normalized clustering signature

C̃ =
1
N

N∑
i=1

(N
(i)
FB

M
(i)
B

,
N

(i)
FFA

M
(i)
A

,
N

(i)
FFB

M
(i)
B

,
N

(i)
FFC

M
(i)
C

)

(N
(i)
FB

M
(i)
B

+
N

(i)
FFA

M
(i)
A

+
N

(i)
FFB

M
(i)
B

+
N

(i)
FFC

M
(i)
C

)

.

In [Dor04] Dorogovtsev defined certain clustering characteristics of undirected networks and
derived the relations in correlated and uncorrelated networks. We will do the analog for directed
networks.

Definition 2.12 (The in-outdegree dependent local clustering distribution).

C(k+, k−) = E[C(i)|deg+(i) = k+, deg−(i) = k−]

is a vector which has as components the expected relative number of closed loops of a certain type
between the in-neighbors and the out-neighbors of a vertex with in-degree k+ and out-degree k−.
We can calculate the mean value over all C(k+, k−):

C =
∑

k+,k−

−→
P v(k+, k−)C(k+, k−) (1)

3 Relations in directed networks

We use this section to explain the basic relations between the different distributions and also to
calculate some probabilities which we need later.

3.1 Clustering signature

In section 2 we defined the mean clustering signature C and the global clustering signature C.
Here we will show that this two definitions are equivalent.

Observation 3.1.
C = C

Proof.
C =

∑
k+,k−

−→
P v(k+, k−)C(k+, k−)

=
∑

k+,k−

−→
P v(k+, k−) · E

[
C(i)|deg+(i) = k+, deg−(i) = k−

]

= E
[
C(i)

]
=

1
N

∑
v∈V

(
NFB(v)

M
(v)
B

,
NFFA

(v)

M
(v)
A

,
NFFB

(v)

M
(v)
B

,
NFFC

(v)

M
(v)
C

)
= C
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3.2 The average degree

The average in-degree is equal to the average out-degree because of
∑

v∈V deg
+(v) = L =∑

v∈V deg
−(v).

k+ = k− =
k

2
(2)

Another useful equation is:

k+ = k− =

 ∑
k+,k′−

1
k+

−→
P A(k+, k′−)

−1

(3)

Proof.

k+ = k− =
L

N
=

L∑
k+ N+(k+)

=
L∑

k+
1

k+

∑
k′− L(k+, k′−)

=
L

L
∑

k+,k′−
1

k+

−→
P A(k+, k′−)

=

 ∑
k+,k′−

1
k+

−→
P A(k+, k′−)

−1

4 Distribution hierarchy

In undirected networks there is a simple distribution hierarchy between vertex degree, edge and
wedge where we can always derive the lower distribution from the higher one but not vice versa.
In directed networks we have two types of vertex degree distributions and three types of wedge
distributions. But is there still a simple hierarchy? And if there is one, what is its structure? To
answer this question we will take a closer look at the relations between the different distributions.

4.1 Relation between vertex and arcs

The in- and the out-degree distributions (
−→
P +(k+) and

−→
P −(k−)) are defined by their joint distri-

bution
−→
P v(k+, k−):

−→
P +(k+) =

∑
k

−→
P v(k+, k)

and −→
P −(k−) =

∑
k

−→
P v(k, k−)

It is not possible to get the arc distribution from the in-out-degree distribution
−→
P v(k+, k−) (and

therefore also not from the in- or the out-degree distribution). A simple counter example is
shown in Figure 5 where we have two networks with identical degree distributions but different
arc distributions.

Like in the directed case, we can derive
−→
P +(k+) (and

−→
P −(k−)) from

−→
Pa(k+, k′−).
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Figure 5: Two networks with identical degree distribution but different arc distribution.

Figure 6: Two networks with identical arc distribution but different in-out-degree and wedge
distribution.

Observation 4.1.
−→
P +(k+) =

k+
∑

k−
−→
Pa(k+, k−)
k+

(4)

and
−→
P −(k) =

k−
∑

k+

−→
Pa(k+, k−)
k−

(5)

Proof. ∑
k−

−→
Pa(k+, k−) =

number of arcs with outdegree k+

L

=
−→
N+(k+) · k+∑
k+

−→
N+(k+) · k′+

=
−→
P +(k+) ·N · k+∑
k+

−→
P +(k+) ·N · k+

=
−→
P +(k+) · k+

k+

Another counter example (Figure 6) shows that it is in general not possible to derive the
in-out degree distribution from the arc distribution.

4.2 Relation between arcs and wedges

4.2.1 Wedge distribution from arc distribution

Figure 6 shows two graphs which have the same arc distribution but different wedge distribu-
tions. This means that it is in general not possible to derive the wedge distribution from the arc
distribution.
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u v u v u v

Figure 7: Counter examples

4.2.2 The weakly connected case

In a weakly connected network we are able to derive the arc distribution from the wedge dis-
tribution if and only if we know the distribution for all three types of wedge. This is what the
following two lemmas state.

Lemma 4.1. For each type of wedge there exist weakly connected networks in which it is impossible
to calculate the arc distribution from the wedge distribution of this type.

Proof. I show that for all three types of wedges there exist such an example (Figure 7 illustrates
this counterexamples).

P-wedge: An arc (u, v) with deg−(u) = 0 and deg+(v) = 0 is not part of any P-wedge and
can therefore not be counted by using the P-wedge distribution. Note that such arcs can occur
in weakly connected networks.
B-wedges: An arc (u, v) with deg+(u) = 1 is not part of any B-wedge and can therefore not be
counted by using the B-wedge distribution.
S-wedges: An arc (u, v) with deg−(v) = 1 is not part of any S-wedge and can therefore not be
counted by using the S-wedge distribution.
This three examples are generic. We can construct a network with arbitrary many such arcs such
that from a single wedge distributions it is not possible to derive the arc distribution.

Lemma 4.2. If we know the distributions for all three wedge types then the arc distribution is
defined by

−→
P a(k+, k′−) =

1
L
δk+,1 · δk−,1WP

∑
k′,k′′

−→
P P (k+, k−, k′, k′′)

k′
+
∑

k′ 6=k−,

k′′ 6=k+

−→
P S(k′, k′′, k+, k−)

k′′

 (6)

+
1
L
δk+,1 ·

(
1− δk−,1

)
WB

(∑
k′

−→
P B(k−, k+, k′)

k+ − 1

)

+
1
L

(1− δk+,1)WS

(∑
k′

−→
P S(k+, k−, k′)

k− − 1

)
Proof. The following table shows for which in- and out-degree values of an arc we can use which
kind of wedge distribution:
k+ k− Wedge type δk+,1 · δk−,1 (1− δk+,1) δk+,1 · (1− δk−,1)
1 1 P 1 0 0
1 > 1 S 0 0 1
> 1 1 B 0 1 0
> 1 > 1 B 0 1 0
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Counting arcs with in-degree 1 and out-degree 1:

−→
L (k+, k−) =

∑
k′,k′′

WP (k+, k−, k′, k′′)
k′′

+
∑

k′ 6=k−,k′′ 6=k+

WA(k′, k′′, k+, k−)
k′′

Counting arcs with out-degree 1 and in-degree at least 2:

−→
L (k+, k−) =

∑
k′

WS(k+, k−, k′)
k− − 1

Counting arcs with out-degree at least 2:

−→
L (k+, k−) =

∑
k′

WB(k−, k+, k′)
k+ − 1

Hence we can add it all together

−→
P a(k+, k′−) =

1
L
δk+,1 · δk−,1WP

∑
k′,k′′

−→
P P (k+, k−, k′, k′′)

k′
+
∑

k′ 6=k−,

k′′ 6=k+

−→
P S(k′, k′′, k+, k−)

k′′



+
1
L
δk+,1 ·

(
1− δk−,1

)
WB

(∑
k′

−→
P B(k−, k+, k′)

k+ − 1

)

+
1
L

(1− δk+,1)WS

(∑
k′

−→
P S(k+, k−, k′)

k− − 1

)

4.2.3 The strongly connected case

In a strongly connected network every vertex has at least one incoming and one outgoing arc.
Hence there is an A-wedge trough every arc and therefore we can count the arcs by using only
A-wedges:

−→
L (k+, k−) =

∑
k′,k′′

WA(k+, k−, k′, k′′)
k′

4.3 Relation between wedges and in-outdegree distribution

The wedge distribution gives us enough new information to calculate the in-outdegree distribu-
tion (remember that Figure 6 is a counter example that this is not possible from the arc degree
distribution).
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Figure 8: Two networks with equal degree, indegree, outdegree, arc and wedge distributions. The
clustering signatures are also equal for both networks, but the triangle distribution are different.

Observation 4.2. For k+ 6= 0 and k− 6= 0 we get the joint distribution of in and out degree by
looking at all directed paths:

−→
N v(k+, k−) =

∑
k,k′

Wp(k, k+, k−, k′)
k+ · k−

and the border can be derived from the arc distribution (which again can be calculated from the
wedge distribution):

−→
N v(k+, 0) =

∑
k

−→
L (k+, k)
k+

−
∑
k 6=0

−→
N v(k+, k),

−→
N v(0, k−) =

∑
k

−→
L (k, k−)
k+

−
∑
k 6=0

−→
N v(k, k−)

4.4 Relation between triangles and clustering signature

Observation 4.3. It is in general not possible to derive the triangle distribution from the clus-
tering signature and all lower degree distributions (degree, arc, wedge).

Proof. The two networks in Figure 8 have the same clustering signatures and the same lower
degree distributions. But the triangle distribution is different because in the right example we
have a triangle which contains a vertex of in-degree two and out-degree two.

Observation 4.4. From the triangle distribution, the in-out-degree distribution and the reci-
procity distribution, we can get the local clustering distribution:

CFB(k+, k−) =

∑
k+

2 ,k−2 ,k+
3 ,k−3

TFB(k+, k−2 , k
+
2 , k

−
3 , k

+
3 , k

−)
−→
N v(k+, k−)

∑
t

−→
P r(t|k+, k−)(k+k− − 1)

,
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CFFA
(k+, k−) =

∑
k+

2 ,k−2 ,k+
3 ,k−3

TFF (k+, k−2 , k
+
2 , k

−
3 , k

+
3 , k

−)
−→
N v(k+, k−)k+(k+ − 1)

,

CFFB
(k+, k−) =

∑
k+

1 ,k−1 ,k+
3 ,k−3

TFF (k+
1 , k

−, k+, k−3 , k
+
3 , k

−
1 )

−→
N v(k+, k−)

∑
t

−→
P r(t|k+, k−)(k+k− − 1)

,

CFFC
(k+, k−) =

∑
k+

1 ,k−1 ,k+
2 ,k−2

TFF (k+
1 , k

−
2 , k

+
2 , k

−, k+, k−1 )
−→
N v(k+, k−)k−(k− − 1)

.

Hence we can calculate the global clustering signature from the triangle distribution and the reci-
procity distribution:

C =
1
N

∑
k+
1 ,k−1 ,k+

2 ,

k−2 ,k+
3 ,k−3



TFB(k+
1 ,k−2 ,k+

2 ,k−3 ,k+
3 ,k−1 )∑

t

−→
P r(t|k+

1 ,k−1 )(k+
1 k−1 −1)

TFFA
(k+

1 ,k−2 ,k+
2 ,k−3 ,k+

3 ,k−1 )

k+
1 (k+

1 −1)
TFFB

(k+
1 ,k−2 ,k+

2 ,k−3 ,k+
3 ,k−1 )∑

t

−→
P r(t|k+

1 ,k−1 )(k+
1 k−1 −1)

TFFC
(k+

1 ,k−2 ,k+
2 ,k−3 ,k+

3 ,k−1 )

k−1 (k−1 −1)



T

4.5 Relation between triangles and lower order distributions

In Observation 4.3 we already saw that we can not compute the triangle distribution from the
lower order distributions. On the contrary we can not derive a lower order distribution say the
wedges from the triangle distribution. An intuitive argument is that from the triangle distri-
bution we can only count objects that are contained in triangles. Therefore it is easy to find
arbitrary large example networks which have the same triangle distribution but different lower
order distributions.

4.6 Relation between clustering signature and lower oder distributions

Observation 4.5. It is in general not possible to derive the clustering signature from all lower
degree distributions (degree, arc, wedge).

Proof. The two networks in Figure 9 have the same lower degree distributions. But one can verify
that the clustering signature is different.

4.7 The relation of the reciprocity distribution

Observation 4.6. It is in general not possible to derive the reciprocity distribution from the
degree, arc, wedge and triangle distributions and the clustering signature..

Proof. The two networks in Figure 10 have the same degree, indegree, outdegree, arc, wedge
and triangle distributions and an equivalent clustering signature. However, we observe that the
reciprocity distribution is different.
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Figure 9: Two networks with equal degree, indegree, outdegree, arc and wedge distribution but
different clustering signature.

Figure 10: Two networks with equal degree, indegree, outdegree, arc, wedge and triangle distri-
bution but different reciprocity distributions.
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−→
P (k+, k−)

C(k+, k−)

C
−→
P + −→

P −

−→
P R(k+, k−, t)

⊗

⊗

⊗

Figure 11: The complete distribution hierarchy. An arrow from A to B means that B is uniquely
defined by A. An arrow leading from ⊗ to B means that B can be calculated if we know all
distributions which have an arrow to ⊗.

4.8 The big picture

All the relations derived so fare are illustrated in Figure 11. This picture might help a lot for
the analysis of a process. If we are interested in the clustering signature of the network then it
suffices to find a closed formula for the triangle distribution (which might be easier to derive)
and one for the reciprocity distribution. The main difference between directed and undirected
networks is the joint distribution of in- and out-degree which is present only in directed networks.
This joint distribution can only be derived from the wedge distribution. If we limit our attention
on the lower degree distributions (no triangles and clustering signature) then the hierarchy looks
very similar as in the undirected case. The arcs can be calculated from the wedges and the
vertex in-/out-degrees from the arcs. Therefore it suffices to find a closed formula for the wedge
distribution to analyze all this distributions.

5 Important probabilities

We use this section to collect the calculation of some probabilities which are later used. The
reader may skip this chapter because we will always put a reference whenever we use one of this
probabilities.
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5.1 Selecting arcs at random

When it comes to the analysis of a process we are often interested in the probability that an
uniformly at random selected arc (u, v) is of out-degree k:

Observation 5.1.

Pr[deg+(u) = k+] =
k+ ·
−→
P +(k+) ·N
L

=
2 ·
−→
P +(k+) · k+

k
=
−→
P +(k+) · k+

k+
(7)

here we used k = 2L
N and k = 2k+. With similar argumentation we can also get

Pr[deg−(v) = k−] =
−→
P −(k−) · k−

k−
(8)

5.2 Conditional arc degree probability

We define the probability that the in-degree of an arc with out-degree k+ is k− as

−→
P (−|+)(k−|k+) =

−→
P a(k+, k−)∑
k

−→
P a(k+, k)

=
k+ ·
−→
P a(k+, k−)

k+ · P+(k+)
(9)

and the reverse as

−→
P (+|−)(k+|k−) =

−→
P a(k+, k−)∑
k

−→
P a(k, k−)

=
k− ·
−→
P a(k+, k−)

k− · P−(k−)
(10)

where we used Eq. 4 and 5 for the second equality.

6 Correlation

6.1 B-uncorrelated

In the classical random graph model the degree sequence is Poisson distributed and every edge (or
arc in a directed network) has the same probability. This model does not represent the real world
networks very well. In such networks we have certain types of correlations. But if we neglect
some of this correlation then the calculation can become much easier. In undirected networks we
are typically concerned about edge correlation and we call an undirected network uncorrelated if
and only if P (k, k′) = k·P (k)·k′·P (k′)

k
2 holds for all k and k′. In directed networks there are more

types of correlation which we have to take care of. Therefore we call a network B-uncorrelated if
has no correlation of type B.

Definition 6.1 (in-out-degree-uncorrelated). We call a network inout-uncorrelated if the in- and
the out-degree distribution are independent. Then we can calculate the joint distribution of in-
and out-degree: −→

P v(k+, k−) = P+(k+)P−(k−)

.
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Let us quickly repeat the concept of half edges and adapt it to directed networks. If we talk
about half edges in undirected network then we see an edge {u, v} as two half edges of which one
is connected to vertex u and the other one to vertex v. In a directed network we can divide an
arc (u, v) into a head that is connected to v and a tail that is connected to u.

Definition 6.2 (Arc-uncorrelated). Arc-uncorrelated means that the probability for a head at v
and a tail at uto be part of the same arc is uniformly distributed over all heads and tails. Therefore
we can compute the probability that an arc has out-degree k+ and in-degree k−

−→
P a(k+, k−) =

k+ · P+(k+) · k− · P−(k−)
k+ · k−

(11)

The natural step to expand this definition from the arc to wedges is to call a network wedge-
uncorrelated if the event that two arcs of degree (k+, k−) and (k′+, k′−) are connected to a vertex
v is independent of the degrees of the arcs.

Definition 6.3 (Wedge-uncorrelated). Lets define a network as P-wedge-uncorrelated if for all
k+

l , k
−
m, k

+
m and k−r

Pp(k+
l , k

−
m, k

+
m, k

−
r ) =

−→
P v(k−m, k

+
m) ·
−→
P (+|−)(k+

l |k
−
m) ·
−→
P (−|+)(k−r |k+

m)

=
−→
P v(k+

m, k
−
m) ·
−→
P a(k+

l , k
−
m) ·
−→
P a(k+

m, r
−
m) · k+ · k−

k+
l · k

−
r · P+(k+

l ) · P−(k−r )
.

Furthermore a network is B-wedge-uncorrelated if for all k−l , k
+
m and k−r

PB(k−l , k
+
m, k

−
r ) =

−→
P a(k+

m, k
−
l ) ·
−→
P (−|+)(k−r |k+

m)

and S-wedge-uncorrelated if for all k+
l , k

−
m and k+

r

PS(k+
l , k

−
m, k

+
r ) =

−→
P a(k+

l , k
−
m) ·
−→
P (+|−)(k+

r |k−m).

I will use the term wedge-uncorrelated for networks that are P-, B- and S-wedge uncorrelated.

In most of the real world networks the clustering is much larger than expected. This means
that two vertices which share a common neighbor are more often connected then two arbitrary
vertices. The probability that for a vertex u of out-degree k+ and a vertex v of in-degree k− the
arc (u, v) is part of the network is(

−→
P (−|+)(k−|k+) · k−

N−(k−)k−

)
· k+.

This is the probability that a tail at u is connected to a head at v times the number of tails at u.
We want do define triangle-uncorrelated in such a way that a network is triangle uncorrelated if
and only if for every wedge the probability that there is an arc that closes the wedge to a triangle
is the probability of this arc calculated above.

Definition 6.4. A network is called triangle-uncorrelated if for a all wedges on the vertices u, v, w
(where v is the middle vertex) the probability that an arc (u,w) exists is exactly(

−→
P (−|+)(deg−(w)|deg+(u)) · deg−(w)

N−(deg−(w)) · deg−(w)

)
· deg+(u).
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6.2 Clustering in triangle-uncorrelated networks

In Chapter 3 we showed that it is in general not possible to derive the triangle distribution
or clustering signature from the lower order distributions. But if we assume that there is no
correlation on the level of triangles then we can derive the probability of triangles. We present
the calculation only for the feedback loop but it is clear that one could derive the formulas for
the other loops in the same way. The in-outdegree dependent local feedback clustering signature
for a vertex v of in-degree k+ and out-degree k− is the probability that a fixed head at v and a
fixed tail at v are part of a feedback loop. Here Γ(v) denotes the neighborhood of vertex v.

CFF (k+, k−) =
〈mFB(k+, k−)〉

k+ · k−
(12)

= Pr[(u,w) in the network| u ∈ Γ+(v), w ∈ Γ(v) fixed for v of degree (k+, k−)]

=
∑

u+,u−
w+,w−

−→
P (−|+)(u−|k+)

−→
P (+|−)(w+|k−)

−→
P v(u+|u−)

−→
P v(w−|w+)×

(
−→
P (−|+)(w−|u+)

1
NP−(w−)

u+

)
To calculate the probability we have to fix the degrees of u and w and sum over all conditional
probabilities for the different values of the degrees of u and w.

−→
P (−|+)(u−|k+) and

−→
P (+|−)(w+|k−)

are the probabilities that u has in-degree u− and w has out-degree w+. Then
−→
P v(u+|u−) and

−→
P v(w−|w+) denote the probabilities that u has out-degree u+ and w has in-degree w−. The last
part of the product is the probability that there is an arc from u to w. We can get this straight
from the definition of triangle-uncorrelated.
We can insert Eq. (9) and (10) into (12) and get

C(k+, k−) =
k+3

N · k+ · k− · P+(k+) · P−(k−)
(13)

·
∑

u+,u−,w+,w−

−→
P v(u+|u−)

−→
P v(w−|w+)

−→
P a(k+, u−)

−→
P a(w+, k−)

−→
P a(u+, w−)

P−(w−)

this means that in an arc-uncorrelated network we get

C(k+, k−) =
1

N · k+3 ·
∑

u+,u−
w+,w−

−→
P v(u+, u−)

−→
P v(w+, w−)P+(u+)u+u−w+w−. (14)

Here we can already see that the local clustering coefficient for the feedback loop does not
depend on the in- and out-degree of the vertex when the network is arc-uncorrelated and triangle-
uncorrelated.
For completeness we present here also the other clustering signatures in triangle-uncorrelated
networks.
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Lemma 6.1. In a triangle-uncorrelated network we can calculate the local clustering signature
from the degree distribution and arc distribution:

CFB(k+, k−) =
〈mFB(k+, k−)〉

k+ · k−

=
∑

u+,u−
w+,w−

−→
P (−|+)(u−|k+)

−→
P (+|−)(w+|k−)

−→
P v(u+|u−)

−→
P v(w−|w+)×

(
−→
P (−|+)(w−|u+)

1
NP−(w−)

u+

)
,

CFFA
(k+, k−) =

〈mFFA
(k+, k−)〉

k+ · k−

=
∑

u+,u−
w−

−→
P (−|+)(u−|k+)

−→
P (−|+)(w−|k+)

−→
P v(u+|u−)

(
−→
P (−|+)(w−|u+)

1
NP−(w−)

u+

)
,

CFFB
(k+, k−) =

〈mFFB
(k+, k−)〉

k+ · k−

=
∑
u+

w−

−→
P (+|−)(u+|k−)

−→
P (−|+)(w−|k+)

(
−→
P (−|+)(w−|u+)

1
NP−(w−)

u+

)
,

CFFC
(k+, k−) =

〈mFFC
(k+, k−)〉

k+ · k−

=
∑

u+

w+,w−

−→
P (+|−)(u+|k−)

−→
P (+|−)(w+|k−)

−→
P v(w−|w+)×

(
−→
P (−|+)(w−|u+)

1
NP−(w−)

(u+ − 1)
)
.

7 Conclusion

The relations derived in this report can be helpful for the design and analysis of stocastic pro-
cesses in directed networks. We derived the complete hierarchy among the distributions of vertex
degrees, arcs, wedges and triangles. Furthermore, we introduced a clustering distribution which
might often be more handy then the local clustering signature. We showed that the clustering
distribution is equivalen to the clustering signature and derived its relation to all the previous dis-
tributions and also to the reciprocity distribution. At the end we defined some formal restrictions
on the correlation between higher order distributions and pointed out that under the assumption
of such restrictions some complex relations can be simplified.

As a further direction of research we suggest the design of an equilibrium process which
operates on directed networks and has some parameters which allow a control of the clustering
signature.
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