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Abstract

In the paper a procedure for stepwise solution of an in-
verse heat conduction problem is proposed. Based on the
procedure a control system for optimal boundary control of
one class of thermal systems is submitted. The controlled
thermal system is considered to be decomposed to two sub-
systems - a subsystem which is easy to control by a feedback
using measurable outputs of the system and to a subsystem
which distributed state - usually a spatial temperature dis-
tribution inside a heated material - is inacessible to direct
measurement. The dynamics of the state is supposed to be
described by a suitable distributed parameter model with a
boundary excitation performed via the measurable system
output. The control task then consists of optimal varying
the measurable system output, that governs the boundary
excitation of the distributed parameter subsystem, until it
is calculated that the required shape of the distributed state
has been reached. In the paper an optimal reference values
for the system output, which should be tracked by a control-
ler, are generated using stepwise technique for inversion of
the distributed parameter model. The models of both sub-
systems are considered in continuous time, nonparametric
convolutional integral forms. Using a spline approximation
of the convolutional integral describing the first subsystem
a predictive controller with receding horizon strategy is de-
signed. The own inverse problem is solved by an iterative

regularization method. The resulting stepwise procedure is
illustrated on a one-dimensional problem of the boundary
heating of a thin metal bar.

1 Introduction

A heating of solid materials is one of typical technolo-
gical operations in industry. In many of this operations
the aim is to remove the solid once a centre tempera-
ture of the solid has reached a specified value, or once
the temperature within the solid has reached a speci-
fied spatial distribution. Moreover the heating process
should be as quick as possible and optimal from tech-
nological, economical and ecological point of view. Mo-
delling of this processes naturally leads to the problems
of distributed parameter systems where state variables
depend on spatial positions. More often than not only
some of these spatially distributed variables are acce-
sible to direct measurement. In this case the point is
how to manipulate the unmeasured distributed state
variables by utilizing other data measured on the ther-
mal system only and the knowledge of the physical laws
governing the process at hand.

The thermal state inside a solid object during the
heating operation in a furnace is a typical example.
Since it is difficult to monitor this state by routine
measurement techniques, the control aim can be rea-
lized only by means of the surface temperature con-
trol. The thermal system can be easily decomposed to
a pair of subsystems - a subsystem with measurable



outputs (surface - boundary temperature of the heated
object) which is easy to control by a feedback and a
subsequent subsystem which is driven by the preceding
subsystem and whose distributed state is inaccessible
to direct measurement (inside temperature of heated
object). Control of this inside temperature is achieved

not by a feedback but by maintaining a pre-calculated
temperature time profile at the boundary of the object.

The aim of this paper is to submit a predictive con-
trol system working with the measurable output of the
thermal system and tracking a specified, optimally pre-
calculated reference signal for boundary control of the
system in order to obtain a required spatial temperature
profile in the heated object at a selected time instants
t,. For given spatial temperature profile the reference
signal for the system boundary control is obtained by
inverting a distributed parameter model, which descri-
bes the dynamics of the unmeasurable temperature dis-
tribution in the second subsystem of the given thermal
system. In the paper the inverse problem is converted
to some regularization problem and is solved by a step-
wise technique. This technique seems to be suitable
for on-line control of thermal systems under a condi-
tion of stochastic disturbances acting on the controlled
systems. The dynamics of the first subsystem is mo-
delled by continuous-time convolutional integrals with
finite-support kernels. The input and output signals of
the subsystem are considered to be a polynomial spli-
nes. The B-splines are taken as base functions of these
splines. The control synthesis is based on minimization
of an integral continuous-time quadratic loss function,
which after spline approximation is transformed to sim-
ple matrix quadratic form. To minimize the form the
quadratic programming is employed. The allowed con-
trol input signal is then defined by a set of a suitable
selected linear equality and inequality constraints which
act on the vector of the polynomial coefficients of this
signal.

In the following parts of this paper we will briefly
discuss only the main ideas of the proposed boundary
control system and for simplicity we will concentrate
on simple one-dimensional heating problem: boundary
heating of a thin metal bar. The heating apparatus is
considered to be the controlled subsystem of the ther-
mal system with the input signal 4 and the system out-
put signal y - the measured boundary temperature of
the metal bar. This temperature is the manipulated in-
put to the second subsystem - heated metal bar - where
the unmeasured spatial distribution of temperature in
the direction of the bar length is modelled by known
equation of the heat conduction.

2 Spline-based predictive con-
troller

The controlled subsystem is assumed to be represented
by the following time-invariant linear continuous con-
volution model:

/0 a(t — ) y(r) dr +
+ /0 bt —1) u(r) dr + 0 = e(t) (1)

where the finite-support kernels a(t — 7), b(t — 7) and
the output signal y(¢) are considered to be approxima-
ted by suitable chosen spline functions, €(¢) is a noise of
the model, o is an offset term. The input signal u(t) is
a polynomial spline of defined order which is generated
by submitted control synthesis. The model (1) was ori-
ginally developed in [3] mainly to improve discrete-time
control with high sampling rate. The finite supports of
the kernels a, b determine the finite lengths T,, T} of
the past history of the signals y and u over which it
is reasonable to perform integration in model (1) for
any ?.

Let’s approximate the kernels and the signals in equa-
tion (1) by spline function. Then we can obtain the
following discrete form of the original model:

ca Qalt) ¢y + ¢ Qu(t) cu + 0 = e(t) (2)
where
¢a, cp are vectors of model parameters (vectors of spline
coefficients of the unknown kernels a, b)
cu, ¢y are vectors of spline coefficients of input and out-
put signals u, y
Qa(t), Qp(t) are matrices of integrals of spline base
functions products:

Qu(t) = /:T ma(t— 1) mI(D) dr (3

Qolt) = /t_T my(t — ) m? (7) dr

e(t) is noise term of the model modified by the appro-
ximation errors, the vectors m contain the spline base
functions used for the approximation tasks. It is easy to
show that the matrices Q4(t), @s(¢) do not depend on
time and can be calculated in advance, before the regu-
lation starts. Using this matrices we can form useful fil-
ters for the measured variables which enable us to keep
low order models for identification and simultaneously
high sampling rate for measurement and control.

To determine the optimal control input signal we
will start with minimization of the following integral



continuous-time quadratic loss function:

tr+Th
W= [ 1w - w ) wo +

Th Ji,

Hu(t) = ur(t)? wu(®)] dt, u(t) € Uaa(t)  (4)

where:

yr (1), ur(t) are reference signals; wy (t), wu(t) are weigh-
ting functions; 7T} is a control horizon and Ugq(t) is a
set of allowed control input signals.

Let’s consider the input and output signal in (4) (to-
gether with reference values) in the form of spline func-
tion. The projected control input signal will be wanted
in its piecewise polynomial representation. Then after
substitution to (4) we can find that:

T(pn) = (yn — ¥p)" Qy (yn — ¥3) +

+(pn — 23)" Qu (ph —15),pu € CaalTh) (5)

where the penalty matrices @y, @y fully depend on the
used spline base functions and can be calculated in ad-
vance; the vector pp contains the coefficients of all po-
lynomial pieces which form the projected control input
signal on the time interval [tz,tr + Th] and the vector
yn includes the sampled values of the continuous-time
output signal y(¢) to be predicted over the above time
interval. To minimize the matrix form (5) the quadra-
tic programming technique is well suited. Two classes
of constraints are simultaneously used:

- the constraints which are inevitable to formulate the
input signal as the spline function of given order

- the constraints which are due to physical limitations
on the actuator or process (more frequently amplitude
and rate limitations).

The quadratic programming technique can easily co-
ver other types of constraints which are interesting for
practice. Remarcable tuning knob in the spline based
synthesis is a distance between the spline knots of the
projected input signal in the time interval [¢g, ¢ + Th]:
- the polynomial pieces of the input signal can be pro-
jected on the same time interval as they will be really
applied
- the polynomial pieces can be projected on time in-
tervals which are a multiple of the interval as they
will be really applied; it means that nonrealised (fake)
control periods have been inserted into control horizon
[te, te + Th].

The positive features of the technique consist in si-
gnificant reduction of computation burden of quadratic
programming and in zero control weighting for the con-
trol of non-minimum phase systems. For details see [6].

3 Formulation of the inverse

problem

Let the behaviour of the unmeasured temperature field
of the metal bar s(x,1) at the time instant ¢ and the po-
sition x of the bar is described by the parabolic partial
differential equation:

62
as(x,t) - a2ﬁs(x,t) +bs(z,t) =0
Js

(2, 10) = sola), (0,1) = 1), S (L, 1) =0
0<z<L, t>ty, a#0

A h
2_ A _n
“= c.p’ b c.p (6)

with known Green’s function G(z,¢,t):

o0

2
G(I’;g;t) = Z;gin pL sin rn€ exp (—bt _ G2Tn2t)
™
= (4 gy

where: L is the length of the bar; A is thermal conduc-
tivity coefficient; ¢ is specific heat; p is specific mass of
the bar and h is heat-transfer coefficient.

Then the solution of the equation can be given in the
following integral form:

¢ L
s(z,t) = / / G(z, &t — 1) w(&, 1) dr (7)
to <0
where w(z,t) is a standardizing function (see [1]):

w(z,t) = so(z)é(t) — a%'(a})y(t) (8)

which includes an exiting function, boundary and in-
itial conditions and é(.) is Dirac function. The heating
of the bar is controlled through the boundary tempera-
ture y(t) = s(0,?) and the task is to find such function
y(t) - boundary heating of the bar - which ensures us
attainment of the required spatial distribution of the
bar temperature s(z,t) at specified time instant ¢,. In
this situation the relation (7) simplifies to the following
form:

to (9
s(z,ty) = /t % Gz, &ty — T) |e=0 y(r) dT+

+/0 G(z, &ty — to) so(€) d¢ (9)
where
so(z) = s(z,0)

is given initial condition. The second part of equation
(9) is known in the case of known initial condition. Let‘s



denote it as s.(z,,) and define modified state sp, (2, 1,)
as:

sm(z,ty) = s(z,t,) — sc(z,ty)

then
sm(z,ty) = (10)
Ty a
2
=—a —G(z,&,ty — T) |e=o y(T)dT
to O€
The last equation can be written in an operator form:
sm = Ay sm€S ,yevY CZ (11)

where A is the linear integral operator of relation (10),
Z and S are Hilbert spaces, Y is closed convex set,
build by a priori limitations of this task . The relation
(11) represents an integral equation of the first type and
solution of this equation fulfils the definition of the ll-
posed problems in the Hadamard‘s sense. Therefore it
is necessary to use some regularization method, which
will give satisfactory results. In this paper we employ a
method of Tikhonov [7], where the task of solving the
equation (11) is replaced by the task of minimization of
following smoothing functional My[y]:

Maly] =|| Any — sms || +a || y |2 (12)

where a > 0 is the regularization parameter.
Ap is an operator which approximates the operator
A with defined error h, that means

| An — Al < A, (13)
Sms 1s the left side of (11) which is specified by error é:
| sm = sms || < 6, (14)

Let’s define so-called generalized deviation as :

p(a) =[l A Yo — sms |I” —

~(+hlya lI*) = (1 (sms, An))” (15)
where

1 (Sms, An) = ylélif/ | Any — sms ||

is the degree of inconsistency.

The regularization parameter a of the smoothing
functional is chosen by generalized principle of devia-
tion, which is following. If the condition:

| $me 1> 6% + (u(s5ms, An))?

is not fulfilled,the approximate solution of the equation
(11) is y = 0. If the condition (3) is fulfilled, so the
generalized deviation (3) has a positive root a* and
solution of the equation (11) is minimum yq+ of the
smoothing functional (12).

The solution of the equation (11) can be find by fol-
lowing iterative procedure :

1. Choose of arbitrary (sufficiently large) value of the
parameter «

2. Minimization of the functional M,[y] on the boun-
ded region Y C 7

3. Evaluation of the generalized deviation p(«)

4. Search for the root a* of the equation p(a) = 0
with accuracy ¢, it means check the condition:

| ple) | < e (16)

where ¢ = C * § and C' < 1 is a constant which
depends on the desired accuracy of the root a*

5. If the condition (16) is not fulfilled the procedure is
repeated from the point 2. Otherwise the minimum
Yo 1s the solution of the equation (11).

As regards to the accuracy of the proposed procedure
the fulfillment of the inequality (14) for found solution
y(t) is always guaranteed for suitably chosen operator
error h and the inaccuracy 6.

4 Stepwise technique for the in-
verse problem

In preceding section the inverse task for the distributed
model (6) was transformed to the problem of solving
the operator equation (11) for a given left side. The
solution yo» = yr(¢) of this equation forms the refe-
rence signal for optimal boundary control of the heated
bar. The iterative regularization method used for sol-
ving equation (11) is valid only for in advance given and
constant integral bounds #o,?,. This fact is necessary
to take into account in designing the generator of the
reference signal y.(t) for on-line boundary control of
the thermal system. One way is to base the genera-
tor structure on stepwise triggering the inversion task
in ekvidistantly located discrete time instants ¢,. The
distance between the time instants determines the in-
tegral bounds in the numerical solution of the equation
(11) and in next explanation we will call the distance
inversion horizon T, . From practical point of view the
length of the horizon T, depends on several factors:
-technological needs for the heating process and the goal
of the heating

-dynamical properties of the thermal system

-time behaviour of disturbances acting on the measura-
ble system output.

In the process of the stepwise triggering of the inversion
task with the time period T, it is necessary to know
at the particular starting time instant a true profile of



the unmeasurable temperature distribution s(z,?) in
the heated bar. The true profile s(z,) , which is really
reached at the end of a preceding period, creates the in-
itial condition for the inversion in a subsequent period.
Because the temperature profile s(z,t) is not measured
its true time developement can be only simulated using
a responce of the model (6) due to the really measured
system output signal y(¢). For numerical calculation of
the true responce s(z,t) it is advantageous to utilize
again the operator form (11) of the model. The length
of the time interval during which the integration in (11)
with the real signal y(¢) is performed we will call a simu-
lation horizon T,,. For numerical reasons it is suitable
to choose Ty, = T, /ni, where ni is given integer.

The starting point for the numerical solution of the
simulation and the inversion tasks consists in suitable
discretization of the basic relation (11) and its trans-
formation to a matrix form. The resulting matrix form
oriented to the simulation we will call a simulation mo-
del and the matrix form aimed at the inversion we will
call an inversion model. Based on the above models
the generator of the reference signal y,(t) is construc-
ted. The required profiles s, () enter the generator
with time period T, and the real measured signal y(t)
enters the generator with period T, .

5 Discretization of the simula-
tion model

Consider the time instants ¢;, j = 1,2,..., in which
the simulation tasks have to performed and let At; =
t; —tj_1 = T,,.Then based on equation (10) for the
time (¢;_1,1;) it holds:

s(z,t5) = sm(z,tj) + sc(z, ;) (17)

sm(z,t) =

tj
= —a? /1 1 g—gG(l’,f,tj —7) le=o y(r) dr (18)

" L
Sc(xatj) :A G(‘r:é::t] _tj—l) 5(€:tj—1) d€ (19)

In further treatment let us replace the continuous func-
tions s(x,t), sm(z,t), sc(x,t) by following vectors con-
tainig the values of the functions at spatial points z; at
time instants ¢;:

st-T = [sm(21,8), - -, sm(2i,t5), . -, Sm(Zng, t5)]
sc]-T = [sc(21,t5), ..., sc(®iy t5), . ., Se(@na, tj)]

s;‘-r = [s(z1,t5),...,8(zi,t5),. .., 8(Cnz, tj)] (20)

where

1, = 0, z;=xi_1+Ax, 1 =2,...,nz,

Az = Lf(nz—1)

In the case of the simulation model the function
s(z,t) represents the true state which was reached by
the system during the time period 7T, and in the case
of the inversion task the function s(z,t) represents the
desired profile the achievement of which during the time
period T, is the goal of control.

5.1 Determination of vector sc;

The spatial discretization in the vector (20) is done for
points # = x;,1=1,2,...,nx, :

L
sol(is ) :/0 Gl €, To) s(E,tj_1) dé (21)

By taking into account spline approximations of the
profiles s(z;,tj_1):

ne

s(xi,tj_l) = chk Mk(-fz) (22)

k=1

where: e¢sy, are spline coefficients and My (z;) are B-
splines, then it is possible to arrive to the following
discrete form:

s¢; = Gmo Sj-1 (23)
Grmo = Gpmj Mue My,

The matrix G,,o with dimensions [nz.nz] can be set in
advance before the control starts. For the entries of the
above matrices one gets:

Gmj = {G(xi,ﬁk,Tm)Af}i:Lnx; k=1,n¢
My, = {Mi(xk)}izl,nx; k=1nz
M”f = {iwi(gk)}izl,nx; k=1,n¢

5.2 Determination of vector sm;

The elements of the vector sm; are evaluated using

the equation (18) written for the points z =
i=1,2,...nx, :
sm (@i, tj) = (24)
2 [0
= —a / —G(2,&,t; — T) |e=0 y(r) dr
i,y O€
-1

Let us approximate the real measured output signal
y(t) (controlled boundary temperature of the bar) by
spline function vy, (t):

mt

vym () =Y cymy, My (1) (25)

k=1



vym () = M (t) eym (26)

crm = leyma, ..., cympmi]
mZ, (1) = [Mi(t), ..., Mumi(t)]

where My(t) are suitable chosen B-splines. After sub-
stitution (26) to (24) and minor derivation the following
relation is valid:

smj = Gmp Mp: cym = (27)
= Gpgq Cym
Gna = Gmp My
For matrix G,,; - [nz.nt] it holds:
Gmb = {gmb(l’ k)}z’:l,nw; k=1,nTt (28)
gmb(i, k) =
0
= —a2%G(xi,f,Tm — (k= 1)AT) [e=0 AT
the matrix M,,; - [n7.mt] contains the values of the

mention B-splines:

My = {‘Mk(ri)}izl,nr; k=1,mt

The matrix G,,4 is also possible to evaluate in advance.
Using the relations obtained for the vectors sc; and sm;
we can find resulting discrete form for vector s;, see

(17):
s; = sc¢j+smj= (29)

= G Sj—1 + Gg Cym

6 Discretization of the inversion
model

The philosophy of discretization is similar with the si-
mulation model. Now we are interested to find an op-
timal boundary condition - reference signal for y(¢) in
the time interval T, = t, —tg with the aim to bring the
state s(z,t) at time instant ¢, = ¢+ 7, to the required
state s,(z) as close as possible. Let us approximate the
signal y(t) by linear combination of nt B-splines with
spline coefficient vector:

CZ'U = [C'y'U]_, sy C'yvm] (30)
and set the required state s,(z) through a vector of its
values at points x;, 1=1,2,...,nx, :

sz = [s,(21),...,8:(2ns)] (31)

The dimensions of other vectors (nz,né, nr) are the
same as in previous subsection. Similar to (29) it is
possible to write:

SMpi; = SZ — SCpj (32)

where the vector scy,; is calculated according to (23)
for given initial state vector sg using of ni steps of the
simulation:

SCpj = GvO Sp (33)
G, = G, M, M}
The components of matrix G, - [nz.né] are:

GU = {gv(i’j)}izl,nx; j=1n¢ (34)
g'U(i,j) - G(Izag‘]:Tv) Ag

Based on the obtained discrete relations it is possible to
approximate the smoothing functional (12) by following
resulting form [4]:

]\Ala[y] = cyTU F ey —2h7 ¢yt (35)
+sm?, smu; Ax + « cyTU (M, + My4) cyo =

_ T T T .
=cy, R cyy —2h' cyy +sm,; smy; Az

with
R=F+aoa (M, +M,) (36)
where
F = GJ; GuAzr Gyy= Gy My
Gy = {g’()b(l, k)}izl,nx; k=1n7
gub(i, k) =
= —azg—gG(l‘i,f,Tv - (k’ - 1)AT) |§=0 AT
M,: = {Mk(Ti)}izl,nT; k=1nt
nt
M, = Athn mf
=1
nt
M,; = At» md, md?,
=1
m,; = [M(7i),..., My(1i)]
md,, = [M'i(7i),..., M (7))
and
smp; = Gy Cyy (37)
h” = sm!, G4 Ax

The procedure of minimization of the smoothing
functional (35) can be numerically solved by various
quadratic programming methods, we utilized the effi-
cient algorithm of Powell [5]. The algorithm enables
us to set various technologically inspired constraints on
the vector ¢y, and to limit the optimal reference signal

for y(t) .



7 TIllustrative example

The complex software for the controller and the inver-
sion tasks was build under PC-KOS Conversational Mo-
nitor using SIC (Simulation Identification Control) li-
brary (for detail information see [2]) for the model (6)
of boundary heated bar.

The heater was simulated by a second order system
with time delay. The inversion tasks were solved for
- realizable profiles, it means that the required profiles
s, (z) are exact solutions of equation (6)
- nonrealizable profiles, the required profiles s,(z) do
not belong to the class of possible solutions of (6).

The simulations with the first type of the profiles
are illustrated on Fig.1. The inversion task was solved
for time instants Ty, 2T, and 37, (indicated by vertical
dash lines) with T, = 350s and T,, = 25s. The re-
quired temperature profiles s,(z) chosen for the above
time instants are marked on Fig.1c,d e by asterisks. The
corresponding optimal reference signal y,(¢) obtained
through stepwise solving the inversion task is drawn
on Fig.l.a by a full line, the real controlled boundary
temperature y(t) is marked by the asterisks. The con-
trol input signal u(¢) to the heater is on Fig.1.b. The
white noise disturbances acting on the controlled signal
y(t) are considered. The slight deviation between the
required and reached profile in Fig.1.e is due to incon-
sistency of the inversion task for the time instants 27, .
The required profile for the time instants is fully re-
achable only from zero initial state.

The simulations with the nonrealizable profile are in-
troduced on Fig.2. The results show good numerical
stability of the proposed inversion algorithm for the case
of inconsistent - physically not real tasks.

8 Conclusion

The procedure for regularization of the inversion task
(11) is numerically tested on the problem of boundary
heated bar. The optimal solution of the inversion was
taken as the reference trajectory for designed predictive
controller. It was found that the regularization method
seek for minimum power consumption solution. The
advantage of the described method was also possibility
to specify the operator inaccuracy h and the zone é for
the selection of the modified state s,,(z,1).

This paper describes a relatively early stage of the re-
search in this area and gives only the main ideas which
must be further elaborated for real-time implementa-
tion.
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